Eye Movement Research pp 503-548 | Cite as
Functional Magnetic Resonance Imaging of Eye Movements: Introduction to Methods and Basic Phenomena
Abstract
The advent of functional magnetic resonance imaging (fMRI) in the early 1990s led to a rapid increase in the study of the neural bases of cognition. fMRI has made it possible to non-invasively study the spatial distribution of the neural processing of eye movements in humans, on a scale that was only previously achieved using invasive methods in animals and non-human primates. With increasing accessibility and affordability of fMRI, the field of functional neuroimaging has grown in usage, sophistication, impact and range of uses (Bandettini, 2012). Here, we present a didactic introduction to the fMRI method, with a specific focus on eye movement research. We introduce the principles of magnetic resonance signal generation and the physiological basis of the fMRI signal; how to set up an fMRI experiment for eye movement research, and fundamental principles of fMRI data preparation and analysis. We then discuss the basic phenomena of the neural bases of eye movements that have been studied using fMRI.
Notes
Acknowledgements
S. Jamadar is supported by an Australian Research Council Discovery Early Career Researcher Award (ARC DECRA) DE150100406. B. P. Johnson is supported by a National Health and Medical Research (NHMRC) Peter Doherty Biomedical Early Career Research Fellowship (APP1112348).
References
- Agam, Y., Joseph, R. M., Barton, J. J. S., & Manoach, D. S. (2010). Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders. NeuroImage, 52, 336–347.CrossRefPubMedPubMedCentralGoogle Scholar
- Aichert, D. S., Williams, S. C. R., Moller, H.-J., Kumari, V., & Ettinger, U. (2012). Functional neural correlates of psychometric schizotypy: An fMRI study of antisaccades. Psychophys, 49, 345–356.CrossRefGoogle Scholar
- Allport, A., Styles, E.A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In C. Umilta & M. Moscovitch (Eds.), Attention and performance XV: Conscious and nonconscious information processing. MIT Press.Google Scholar
- Atwell, D., & Iadecola, C. (2002). The neural basis of functional brain imaging signals. Trends in Neurosciences, 25, 621–625.CrossRefGoogle Scholar
- Bandettini, P. A. (2012). Twenty years of functional MRI: The science and the stories. Neuroimage, 62, 575–588.CrossRefPubMedGoogle Scholar
- Becker, W., & Fuchs, A. F. (1985). Prediction in the oculomotor system: Smooth pursuit during transient disappearance of a visual target. Experimental Brain Research, 57(3), 562–575.CrossRefPubMedGoogle Scholar
- Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic Resonance in Medicine, 34(4), 537–541.CrossRefPubMedPubMedCentralGoogle Scholar
- Brown, M. R. G., Goltz, H. C., Vilis, T., Ford, K. A., & Everling, S. (2006). Inhibition and generation of saccades: Rapid event-related fMRI of prosaccades, antisaccades and no-go trials. Neuroimage, 33, 644–659.CrossRefPubMedGoogle Scholar
- Brown, M. R. G., Vilis, T., & Everling, S. (2007). Frontoparietal activation with preparation for antisaccades. Journal of Neurophysiology, 98, 1751–1762.CrossRefPubMedGoogle Scholar
- Bullmore, E. T., Brammer, M. J., Rabe-Hesketh, S., Curtis, V. A., Morris, R. G., Williams, S. C. R., et al. (1999). Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Human Brain Mapping, 7(1), 38–48.CrossRefPubMedGoogle Scholar
- Burke, M. R., & Barnes, G. R. (2008). Brain and behavior: A task-dependent eye movement study. Cerebral Cortex, 18(1), 126–135.CrossRefPubMedGoogle Scholar
- Buxton, R. B. (2012). Dynamic models of BOLD contrast. Neuroimage, 62, 953–961.CrossRefPubMedPubMedCentralGoogle Scholar
- Buxton, R. B., Wong, E. C., & Frank, L. R. (1998). Dynamics of blood flow and oxygenation changes during brain activation: The balloon model. Magnetic Resonance in Medicine, 39, 855–864.CrossRefPubMedGoogle Scholar
- Calhoun, V. D., Liu, J., & Adali, T. (2009). A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic and ERP data. Neuroimage, 45, S163–S172.CrossRefPubMedGoogle Scholar
- Camchong, J., Dyckman, K. A., Austin, B. P., Clementz, B. A., & McDowell, J. E. (2008). Common neural circuitry supporting volitional saccades and its disruption in schizophrenia patients and relatives. Biological Psychiatry, 64, 1042–1050.CrossRefPubMedPubMedCentralGoogle Scholar
- Cameron, I. G. M., Pari, G., Alahyane, N., Brien, D. C., Coe, B. C., Stroman, P. W., et al. (2012). Impaired executive function signals in motor brain regions in Parkinson’s disease. Neuroimage, 60, 1156–1170.CrossRefPubMedGoogle Scholar
- Chikazoe, J., Konishi, S., Asari, T., Jimura, K., & Miyashita, Y. (2007). Activation of right inferior frontal gyrus during response inhibition across modalities. Journal of Cognitive Neuroscience, 19, 69–80.CrossRefPubMedGoogle Scholar
- Coles, M. G. H., Smid, H. G. O. M., Scheffers, M. K., & Otten, L. J. (1994). Mental chronometry and the study of human information processing. In M. D. Rugg & M. G. H. Coles (Eds.), Electrophysiology of mind: Event-related brain potentials and cognition (pp. 86–131). USA: Oxford University Press.Google Scholar
- Connolly, J. D., Goodale, M. A., Cant, J. S., & Munoz, D. P. (2007). Effector-specific fields for motor preparation in the human frontal cortex. Neuroimage, 34, 1209–1219.CrossRefPubMedGoogle Scholar
- Connolly, J. D., Goodale, M. A., Goltz, H. C., & Munoz, D. P. (2005). fMRI activation in the human frontal eye field is correlated with saccadic reaction time. Journal of Neurophysiology, 94, 605–611.CrossRefPubMedGoogle Scholar
- Connolly, J. D., Goodale, M. A., Menon, R. S., & Munoz, D. P. (2002). Human fMRI evidence for the neural correlates of preparatory set. Nature Neuroscience, 5, 1345–1352.CrossRefPubMedGoogle Scholar
- Curtis, C. E., & Connolly, J. D. (2008). Saccade preparation signals in the human frontal and parietal cortices. Journal of Neurophysiology, 99, 133–145.CrossRefPubMedGoogle Scholar
- Curtis, C. E., Rao, V. Y., & D’Esposito, M. (2004). Maintenance of spatial and motor codes during oculomotor delayed response tasks. Journal of Neuroscience, 24, 3944–3952.CrossRefPubMedGoogle Scholar
- Curtis, C. E., Sun, F. T., Miller, L. M., & D’Esposito, M. (2005). Coherence between fMRI time-series distinguishes two spatial working memory networks. Neuroimage, 26, 177–183.CrossRefPubMedGoogle Scholar
- de Zwart, J. A., van Gelderen, O., Fukunaga, M., Duyn, J. H. (2008). Reducing correlated noise in fMRI data. Magnetic Resonance Medicine, 59, 939–945.Google Scholar
- De Weijer, A. D., Mandl, R. C. W., Sommer, I. E. C., Vink, M., Kahn, R. S., & Neggers, S. F. W. (2010). Human fronto-tectal and fronto-striatal-tectal pathways activate differently during anti-saccades. Frontiers in Human Neuroscience, 4, 41.PubMedPubMedCentralGoogle Scholar
- DeSouza, J. F., Menon, R. S., & Everling, S. (2003). Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related fMRI. Journal of Neurophysiology, 89, 1016–1023.CrossRefPubMedGoogle Scholar
- Diedrichsen, J. (2006). A spatially unbiased atlas template of the human cerebellum. Neuroimage, 33, 127–138.CrossRefPubMedGoogle Scholar
- Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., & Ramnani, N. (2009). A probabilistic MR atlas of the human cerebellum. Neuroimage, 46, 39–49.CrossRefPubMedGoogle Scholar
- Diedrichsen, J., Verstynen, T., Schlerf, J., & Wiestler, T. (2010). Advances in functional imaging of the human cerebellum. Current Opinion in Neurology, 23, 382–387.PubMedGoogle Scholar
- Donders, F. C. (1868). On the speed of mental processes. In W. G. Koster (Ed.), Acta Psychologica, 30: Attention and Performance II (1969), 412–431.CrossRefPubMedGoogle Scholar
- Dum, R. P., & Strick, P. L. (2003). An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. Journal of Neurophysiology, 89, 634–639.CrossRefPubMedGoogle Scholar
- Duong, T. Q., Yacoub, E., Adriany, G., Hu, X., Ugurbil, K., et al. (2002). High-resolution, spin-echo BOLD and CBF fMRI at 4 and 7 T. Magnetic Resonance Medicine, 48, 589–593.CrossRefGoogle Scholar
- Duzel, E., Guitart-Masip, M., Maass, A., et al. (2015). Midbrain fMRI: applications, limitations and challenges. In K. Uludag et al. (Eds.). fMRI: From Nuclear Spins to Brain Functions. Biological Magnetic Resonance 30. New York: Springer.Google Scholar
- Dyckman, K. A., Camchong, J., Clementz, B. A., & McDowell, J. E. (2007). An effect of context on saccade-related behaviour and brain activity. Neuroimage, 36, 774–784.CrossRefPubMedGoogle Scholar
- Dyckman, K. A., Lee, A. K. C., Agam, A., Vangel, M., Goff, D. C., Barton, J. J. S., et al. (2011). Abnormally persistent fMRI activation during antisaccades in schizophrenia: A neural correlate of perseveration? Schizophrenia Research, 132, 62–68.CrossRefPubMedPubMedCentralGoogle Scholar
- Dyckman, K. A., & McDowell, J. E. (2005). Behavioral plasticity of antisaccade performance following daily practice. Experimental Brain Research, 162, 63–69.CrossRefPubMedGoogle Scholar
- Ecklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. PNAS, 113, 7900–7905.CrossRefGoogle Scholar
- Enderle, J. D. (2002). Neural control of saccades. In J. Hyona, D. P. Munoz, W. Heide, & R. Radach (Eds.), Progress in brain research (Vol. 140, pp. 21–49).Google Scholar
- Ettinger, U., Ffytche, D., Kumari, V., Kathmann, N., Reuter, B., Zelaya, F., et al. (2008). Decomposing the neural correlates of antisaccade eye movements using event-related fMRI. Cerebral Cortex, 18, 1148–1159.CrossRefPubMedGoogle Scholar
- Ettinger, U., Williams, S. C. R., Patel, D., Michel, T. M., Nwaigwe, A., Caceres, A., et al. (2009). Effects of acute nicotine on brain function in healthy smokers and non-smokers: Estimation of inter-individual response heterogeneity. Neuroimage, 45, 549–561.CrossRefPubMedGoogle Scholar
- Feinberg, D. A., & Setsompop, K. (2013). Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. Journal of Magnetic Resonance, 229, 90–100.CrossRefPubMedPubMedCentralGoogle Scholar
- Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., et al. (2002). Whole-brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 31, 341–355.CrossRefGoogle Scholar
- Ford, K. A., Goltz, H. C., Brown, M. R. G., & Everling, S. (2005). Neural processes associated with antisaccade task performance investigated with event-related fMR. Neurophysiology, 94, 429–440.CrossRefPubMedGoogle Scholar
- Fornito, A., Zalesky, A., & Breakspear, M. (2015). The connectomics of brain disorders. Nature Neuroscience, 16, 159–172.CrossRefGoogle Scholar
- Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711.CrossRefPubMedGoogle Scholar
- Friston, K. J. (1997). Introduction: Experimental design and statistical parametric mapping. In R. S. J. Frackowiak, K. J. Friston, C. Frith, R. Dolan, & J. C. Mazziotta (Eds.), Human brain function. USA: Academic Press.Google Scholar
- Friston, K. J. (2011). Functional and effective connectivity: A review. Brain Connectivity, 1, 13–36.CrossRefPubMedGoogle Scholar
- Friston, K. J., Price, C. J., Fletcher, P., Moore, C., Frackowiak, R. S. J., & Dolan, R. J. (1996a). The trouble with cognitive subtraction. Neuroimage, 4, 97–104.CrossRefPubMedGoogle Scholar
- Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996b). Movement-related effects in fMRI time-series. Magnetic Resonance Medicine, 35, 346–355.CrossRefGoogle Scholar
- Fuchs, A. F. (1967). Saccadic and smooth pursuit eye movements in the monkey. The Journal of Physiology, 191(3), 609–631.CrossRefPubMedPubMedCentralGoogle Scholar
- Fuchs, A. F., & Robinson, D. A. (1966). A method for measuring horizontal and vertical eye movement chronically in the monkey. Journal of Applied Physiology, 21(3), 1068–1070.CrossRefPubMedGoogle Scholar
- Fukumoto-Motoshita, N., Matsuura, M., Ohkubo, T., Ohkubo, H., Kanaka, N., Matsushima, E., et al. (2009). Hyperfrontality in patients with schizophrenia during saccade and antisaccade tasks: A study with fMRI. Psychiatry and Clinical Neurosciences, 63, 209–217.CrossRefPubMedGoogle Scholar
- Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61, 331–349.CrossRefPubMedGoogle Scholar
- Glover, G. H., Li, T. Q., & Ress, D. (2000). Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine, 44, 162–167.CrossRefPubMedGoogle Scholar
- Greenlee, M. W. (2000). Human cortical areas underlying the perception of optic flow: Brain imaging studies. International Review of Neurobiology, 44, 269–292.CrossRefPubMedGoogle Scholar
- Guimaraes, A. R., Melcher, J. R., Talavage, T. M., Baker, J. R., Ledden, P., Rosen, B. R., et al. (1998). Imaging subcortical auditory activity in humans. Human Brain Mapping, 6, 33–41.CrossRefPubMedPubMedCentralGoogle Scholar
- Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: Functional imaging and the resting human brain. Nature Reviews Neuroscience, 2(10), 685–694.CrossRefPubMedGoogle Scholar
- Habas, C. (2010). Functional imaging of the deep cerebellar nuclei: A review. Cerebellum, 9, 22–28.CrossRefPubMedGoogle Scholar
- Hajnal, J. V., Myers, R., Oatridge, A., Schwieso, J. E., Young, I. R., & Bydder, G. M. (1994). Artifacts due to stimulus correlated motion in functional imaging of the brain. Magnetic Resonance in Medicine, 31(3), 283–291.CrossRefPubMedGoogle Scholar
- Haynes, J.-D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7, 523–534.CrossRefPubMedGoogle Scholar
- Helmholtz, H. V. (1853). Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik, 165(6), 211–233.CrossRefGoogle Scholar
- Henson, R. N. A. (2004). Analysis of fMRI time series. In R. S. J. Frackowiak, K. J. Friston, C. D. Frith, R. J. Dolan, C. J. Price, S. Zeki, J. T. Ashburner, & W. D. Penny (Eds.), Human brain function (2nd ed.). USA: Academic Press.Google Scholar
- Henson, R. N. A., Buchel, C., Josephs, O., & Friston, K. J. (1999). The slice-timing problem in event-related fMRI. Neuroimage, 9, 125.Google Scholar
- Hikosaka, O., Takikawa, Y., & Kawagoe, R. (2000). Role of the basal ganglia in the control of purposive saccadic eye movements. Physiological Reviews, 80(3), 953–978.CrossRefPubMedGoogle Scholar
- Hoge, R. D., Atkinson, J., Gill, B., Crelier, G. R., Marrett, S., & Pike, G. B. (1999). Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proceedings of the National Academy of Sciences, 96, 9403–9408.CrossRefGoogle Scholar
- Huettel, S. A., Song, A. W., & McCarthy, G. (2008). Functional magnetic resonance imaging. Sunderland, Massachusetts: Sinauer Associates Inc.Google Scholar
- Jagla, F., Jergelova, M., & Riecanský, I. (2007). Saccadic eye movement related potentials. Physiological Research, 56(6), 707.PubMedGoogle Scholar
- Jamadar, S. D., Fielding, J., & Egan, G. F. (2013). Quantitative meta-analysis of fMRI and PET studies reveals consistent activation in fronto-striatal-parietal regions and cerebellum during antisaccades and prosaccades. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2013.00749.
- Jezzard, P., & Balaban, R. S. (1995). Correction for genoetric distortion in echo planar images from B0 field variations. Magnetic Resonance Medicine, 34, 65–73.CrossRefGoogle Scholar
- Johnston, K., & Everling, S. (2008). Neurophysiology and neuroanatomy of reflexive and voluntary saccades in non-human primates. Brain and Cognition, 68(3), 271–283.CrossRefPubMedGoogle Scholar
- Karayanidis, F., & Jamadar, S. (2014). ERP measures of proactive and reactive control processes in task-switching paradigms. Task Switching and Cognitive Control, 200–236.Google Scholar
- Kaza, E., Klose, U., & Lotze, M. (2011). Comparison of a 32-channel with a 12-channel head coil: Are the relevant improvements for functional imaging? Journal of Magnetic Resonance Imaging, 34, 173–183.CrossRefPubMedGoogle Scholar
- Keedy, S. K., Ebens, C. L., Keshavan, M. S., & Sweeney, J. A. (2006). Functional magnetic resonance imaging studies of eye movements in first episode schizophrenia: Smooth pursuit, visually guided saccades and the oculomotor delayed response task. Psychiatry Research: Neuroimaging, 146(3), 199–211.CrossRefPubMedGoogle Scholar
- Kimmig, H., Greenlee, M. W., Gondan, M., Schira, M., Kassubek, J., & Mergner, T. (2001). Relationship between saccadic eye movements and cortical activity as measured by fMRI: Quantitative and qualitative aspects. Experimental Brain Research, 141, 184–194.CrossRefPubMedGoogle Scholar
- Kimmig, H., Ohlendorf, S., Speck, O., Sprenger, A., Rutschmann, R. M., Haller, S., & Greenlee, M. W. (2008). fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements. Neuropsychologia, 46(8), 2203–2213.Google Scholar
- Kozlova, G. P. (1984). Individual anatomic variations in cerebellar nuclei. Neuroscience and Behavioural Physiology, 14, 63–67.CrossRefGoogle Scholar
- Kulpe, O. (1909). Outlines of psychology: Based upon the results of experimental investigation (3rd ed.) (translation of original work published in 1893). New York: Macmillan.Google Scholar
- Kuper, M., Thurling, M., Maderwald, S., Ladd, M. E., & Timmann, D. (2012). Structural and functional magnetic resonance imaging of the human cerebellar nuclei. Cerebellum, 11, 314–324.CrossRefPubMedGoogle Scholar
- Lee, J., Park, C., Dyckman, K. A., Lazar, N. A., Austin, B. P., Li, Q., et al. (2012). Practice-related changes in neural activation patterns investigated via wavelet-based clustering analysis. Human Brain Mapping, 34, 2276–2291.CrossRefPubMedPubMedCentralGoogle Scholar
- Limbrick-Oldfield, E. H., Brooks, J. C. W., Wise, R. J. S., Padormo, F., Hajnal, J. V., Beckmann, C. F., Ungless, M. A. (2012). Identification and characterization of midbrain nuclei using optimised functional magnetic resonance imaging. Neuroimage, 59, 1230–1238.CrossRefPubMedPubMedCentralGoogle Scholar
- Lisberger, S. G., Evinger, C., Johanson, G. W., & Fuchs, A. F. (1981). Relationship between eye acceleration and retinal image velocity during foveal smooth pursuit in man and monkey. Journal of Neurophysiology, 46(2), 229–249.CrossRefPubMedGoogle Scholar
- Liu, T., & Frank, L. R. (2004). Efficiency, power and entropy in event-related fMRI with multiple trial types. Part 1: Theory. Neuroimage, 21, 387–400.CrossRefPubMedGoogle Scholar
- Logothetis, N. K. (2007). The ins and outs of fMRI signals. Nature Neuroscience, 10, 1230–1232.CrossRefPubMedGoogle Scholar
- Luck, S. J. (2005). An Introduction to the event-related potential technique. Cambridge: MIT Press.Google Scholar
- Luna, B., Minshew, N. J., Garver, K. E., Lazar, N. A., Thulborn, K. R., Eddy, W. F., & Sweeney, J. A. (2002). Neocortical system abnormalities in autism An fMRI study of spatial working memory. Neurology, 59(6), 834–840.Google Scholar
- Lund, J. S., Lund, R. D., Hendrickson, A. E., Bunt, A. H., & Fuchs, A. F. (1975). The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. Journal of Comparative Neurology, 164(3), 287–303.CrossRefPubMedGoogle Scholar
- Manoach, D. S., Thakkar, K. N., Cain, M. S., Polli, F. E., Edelman, J. A., Fischl, B., Barton, J. J. S. (2007). Neural activity is modulated by trial history: A functional magnetic resonance imaging study of the effects of a previous antisaccade. The Journal of Neuroscience, 27, 1791–1798.CrossRefPubMedGoogle Scholar
- Matsuda, T., Matsuura, M., Ohkubo, T., Ohkubo, H., Matsushima, E., Inoue, K., et al. (2004). Functional MRI mapping of brain activation during visually guided saccades and antisaccades: Cortical and subcortical networks. Psychiatry Research: Neuroimaging, 131, 147–155.CrossRefPubMedGoogle Scholar
- McDowell, J. E., Dyckman, K. A., Austin, B. P., & Clementz, B. A. (2008). Neurophysiology and neuroanatomy of reflexive and volitional saccades: Evidence from studies of humans. Brain and Cognition, 68(3), 255–270.CrossRefPubMedPubMedCentralGoogle Scholar
- Nagel, M., Sprenger, A., Nitschke, M., Zapf, S., Heide, W., Binkofski, F., et al. (2007). Different extraretinal neuronal mechanisms of smooth pursuit eye movements in schizophrenia: An fMRI study. Neuroimage, 34(1), 300–309.CrossRefPubMedGoogle Scholar
- Neggers, S. F. W., van Diepen, R. M., Zandbelt, B. B., Vink, M., Mandl, R. C. W., & Gutteling, T. P. (2012). A functional and structural investigation of the human fronto-basal volitional saccade network. PLoS ONE, 7.Google Scholar
- Nichols, T. E., & Hayasaka, S. (2003). Controlling the family-wise error rate in functional neuroimaging: A comparative review. Statistical Methods in Medical Research, 12, 419–446.CrossRefPubMedGoogle Scholar
- Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Science, 87, 9868–9872.CrossRefGoogle Scholar
- Ozyurt, J., & Greenlee, M. W. (2011). Neural correlates of inter- and intra-individual saccadic reaction time differences in the gap/overlap paradigm. Journal of Neurophysiology, 105, 2438–2447.CrossRefPubMedGoogle Scholar
- Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18(1), 49–65.CrossRefPubMedGoogle Scholar
- Paus, T., Petrides, M., Evans, A. C., & Meyer, E. (1993). Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: A positron emission tomography study. Journal of Neurophysiology, 70(2), 453–469.CrossRefPubMedGoogle Scholar
- Petit, L., & Haxby, J. V. (1999). Functional anatomy of pursuit eye movements in humans as revealed by fMRI. Journal of Neurophysiology, 82(1), 463–471.CrossRefPubMedGoogle Scholar
- Pierrot-Deseilligny, C., Milea, D., & Müri, R. M. (2004). Eye movement control by the cerebral cortex. Current Opinion in Neurology, 17(1), 17–25.CrossRefPubMedGoogle Scholar
- Poldrack, R. A. (2007). Region of interest analysis for fMRI. Social Cognitive and Affective Neuroscience, 2(1), 67–70.CrossRefPubMedPubMedCentralGoogle Scholar
- Poldrack, R. A., Mumford, J. A., & Nichols, T. E. (2011). Handbook of functional MRI data analysis. New York: Cambridge University Press.CrossRefGoogle Scholar
- Poncelet, B. P., Wedeen, V. J., Weisskoff, R. M., & Cohen, M. S. (1992). Brain parenchyma motion: Measurement with cine echo-planar MR imaging. Radiology, 185, 645–651.CrossRefPubMedGoogle Scholar
- Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterise, and remove motion artifact in resting state fMRI. Neuroimage, 84, 320–341.CrossRefPubMedGoogle Scholar
- Raemaekers, M., Jansma, J. M., Cahn, W., Van der Geest, J. N., van der Linden, J. A., Kahn, R. S., & Ramsey, N. F. (2002). Neuronal substrate of the saccadic inhibition deficit in schizophrenia investigated with 3-dimensional event-related functional magnetic resonance imaging. Archives of General Psychiatry, 59, 313-320.Google Scholar
- Raemaekers, M., Vink, M., van den Heuvel, M. P., Kahn, R. S., & Ramsey, N. J. (2006). Effects of aging on BOLD fMRI during prosaccades and antisaccades. Journal of Cognitive Neuroscience, 18, 594–603.CrossRefPubMedGoogle Scholar
- Robinson, D. A. (1970). Oculomotor unit behavior in the monkey. Journal of Neurophysiology, 33(3), 393–403.CrossRefPubMedGoogle Scholar
- Robinson, F. R. (1995). Role of the cerebellum in movement control and adaptation. Current Opinion in Neurobiology, 5(6), 755–762.CrossRefPubMedGoogle Scholar
- Robinson, F. R., & Fuchs, A. F. (2001). The role of the cerebellum in voluntary eye movements. Annual Review of Neuroscience, 24(1), 981–1004.CrossRefPubMedGoogle Scholar
- Robinson, F. R., Fuchs, A. F., & Noto, C. T. (2002). Cerebellar influences on saccade plasticity. Annals of the New York Academy of Sciences, 956(1), 155–163.CrossRefPubMedGoogle Scholar
- Rugg, M. D., & Coles, M. G. H. (Eds.). (1995). Electrophysiology of mind: Event-related brain potentials and cognition. Oxford psychology series, No. 25. New York, NY, US: Oxford University Press.Google Scholar
- Ruge, H., Jamadar, S., Zimmerman, U., & Karayanidis, F. (2013). The many faces of preparatory control in task switching: Reviewing a decade of fMRI research. Human Brain Mapping, 34, 12–35.CrossRefPubMedGoogle Scholar
- Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A., Hakonarson, H., et al. (2012). Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth. Neuroimage, 60(1), 623–632.CrossRefPubMedPubMedCentralGoogle Scholar
- Scherg, M., Vajsar, J., & Picton, T. W. (1989). A source analysis of the late human auditory evoked potentials. Journal of Cognitive Neuroscience, 1(4), 336–355.CrossRefPubMedGoogle Scholar
- Schmahmann, J. D., Doyon, J., Toga, A. et al. (2000). MRI Atlas of the Human Cerebellum. San Diego: Academic Press.Google Scholar
- Schmahmann, J. D., Doyon, J., McDonald, D., Holmes, C., Lavoie, K., et al. (1999). Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage, 10, 233–260.CrossRefPubMedGoogle Scholar
- Scudder, C. A. (1988). A new local feedback model of the saccadic burst generator. Journal of Neurophysiology, 59(5), 1455–1475.CrossRefPubMedGoogle Scholar
- Scudder, C. A. (2002). Role of the fastigial nucleus in controlling horizontal saccades during adaptation. Annals of the New York Academy of Sciences, 978(1), 63–78.CrossRefPubMedGoogle Scholar
- Scudder, C. A., & Fuchs, A. F. (1992). Physiological and behavioral identification of vestibular nucleus neurons mediating the horizontal vestibuloocular reflex in trained rhesus monkeys. Journal of Neurophysiology, 68(1), 244–264.CrossRefPubMedGoogle Scholar
- Scudder, C. A., Kaneko, C. R., & Fuchs, A. F. (2002). The brainstem burst generator for saccadic eye movements. Experimental Brain Research, 142(4), 439–462.CrossRefPubMedGoogle Scholar
- Seto, E., Sela, G., McIlroy, W. E., Black, S. E., Staines, W. R., Bronskill, M. J., et al. (2001). Quantifying head motion associated with motor tasks used in fMRI. Neuroimage, 14(2), 284–297.CrossRefPubMedGoogle Scholar
- Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276–315.CrossRefGoogle Scholar
- Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2012). Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study. Neuroimage, 59, 1560–1570.Google Scholar
- Sweeney, J. A., Luna, B., Keedy, S. K., McDowell, J. E., & Clementz, B. A. (2007). fMRI studies of eye movement control: Investigating the interaction of cognitive and sensorimotor brain systems. Neuroimage, 36, T54–T60.CrossRefPubMedPubMedCentralGoogle Scholar
- Sweeney, J. A., Mintun, M. A., Kwee, S., Wiseman, M. B., Brown, D. L., Rosenberg, D. R., & Carl, J. R. (1996). Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. Journal of Neurophysiology, 75(1), 454–468.Google Scholar
- Takarae, Y., Luna, B., Minshew, N. J., & Sweeney, J. A. (2014). Visual motion processing and visual sensorimotor control in autism. Journal of the International Neuropsychological Society, 20(01), 113–122.CrossRefPubMedPubMedCentralGoogle Scholar
- Talairach, J., & Szikla, G. (1967). Atlas of stereotactic concepts to the surgery of epilepsy.Google Scholar
- Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. Thieme Medical Pub.Google Scholar
- Tanabe, J., Tregellas, J., Miller, D., Ross, R. G., & Freedman, R. (2002). Brain activation during smooth-pursuit eye movements. Neuroimage, 17, 1315–1324.CrossRefPubMedGoogle Scholar
- Thomsen, K., Piilgaard, H., Gjedde, A., Bonvento, G., & Lauritzen, M. (2009). Principal cell spiking, postsynaptic excitation, and oxygen consumption in the rat cerebellar cortex. Journal of Neurophysiology, 102, 1503–1512.CrossRefPubMedGoogle Scholar
- Tregellas, J. R., Tanabe, J. L., Miller, D. E., Ross, R. G., Olincy, A., & Freedman, R. (2004). Neurobiology of smooth pursuit eye movement deficits in schizophrenia: An fMRI study. American Journal of Psychiatry, 161(2), 315–321.CrossRefPubMedGoogle Scholar
- Tu, P. C., Yang, T. H., Kuo, W. J., Hsieh, J. C., & Su, T. P. (2006). Neural correlates of antisaccade deficits in schizophrenia, an fMRI study. Journal of Psychiatric Research, 40, 606–612.CrossRefPubMedGoogle Scholar
- Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. Neuroimage, 59(1), 431–438.CrossRefPubMedGoogle Scholar
- Velanova, K., Wheeler, M. E., & Luna, B. (2009). The maturation of task set-related activation supports late developmental improvements in inhibitory control. The Journal of Neuroscience, 29(40), 12558–12567.CrossRefPubMedPubMedCentralGoogle Scholar
- Voogd, J., & Barmack, N. H. (2006). Oculomotor cerebellum. Progress in Brain Research, 151, 231–268.CrossRefPubMedGoogle Scholar
- Wager, T. D., & Nichols, T. E. (2003). Optimisation of experimental design in fMRI: A general framework using a genetic algorithm. Neuroimage, 18, 293–309.CrossRefPubMedGoogle Scholar
- Wall, M. B., Walker, R., & Smith, A. T. (2009). Functional imaging of the human superior colliculus: An optimised approach. Neuroimage, 47, 1620–1627.CrossRefPubMedGoogle Scholar
- Wansapura, J. P., Holland, S. K., Dun, R. S., & Ball, W. S., Jr. (1999). NMR relaxation times in the human brain at 3.0 tesla. Journal of Magnetic Resonance Imaging, 9, 531–538.CrossRefPubMedGoogle Scholar
- Yacoub, E., Harel, N., & Ugurbil, K. (2008). High-field fMRI unveils orientation columns in humans. Proceedings of the National Academy of Science, 105, 10607–10612.CrossRefGoogle Scholar