Advertisement

Regenerative Medicine for the Treatment of Congenital Heart Disease

  • Elda Dzilic
  • Stefanie Doppler
  • Rüdiger Lange
  • Markus Krane
Chapter

Abstract

The treatment of congenital heart diseases (CHDs) has improved tremendously over the last decades leading to an increasing life expectancy of this particular population. Physicians now have a broad range of therapeutic option: medical therapy, interventional procedures, or surgery. Nevertheless, shortcomings remain. The ongoing developments in regenerative medicine pave the way toward a new area in the management of CHD, especially regarding surgical intervention. Patients with CHD have a very specific need for certain devices or conduits, which bioengineering and stem cell therapy hope to meet. The development of tissue-engineered products such as blood vessels and heart valves, some of which are currently being evaluated in both preclinical and clinical setting for patients with CHD, has become a promising new direction for regenerative medicine. There is hope that future success with stem cell and tissue engineering therapy will help circumvent the unacceptably long waiting times for heart transplantation by augmenting heart function equivalent to that from mechanical circulatory support devices.

Keywords

Congenital heart disease Tissue engineering Blood vessels Heart valves Cardiac patches Cell therapy 

References

  1. 1.
    van der Linde D, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58(21):2241–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Gross RE. Surgical management of the patent ductus arteriosus: with summary of four surgically treated cases. Ann Surg. 1939;110(3):321–56.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Jortveit J, et al. Trends in mortality of congenital heart defects. Congenit Heart Dis. 2016;11(2):160–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Marelli AJ, et al. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014;130(9):749–56.PubMedCrossRefGoogle Scholar
  5. 5.
    Van Dorn CS, et al. Lifetime cardiac reinterventions following the Fontan procedure. Pediatr Cardiol. 2015;36(2):329–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Voeller RK, et al. Trends in the indications and survival in pediatric heart transplants: a 24-year single-center experience in 307 patients. Ann Thorac Surg. 2012;94(3):807–15; discussion 815–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Lamour JM, et al. The effect of age, diagnosis, and previous surgery in children and adults undergoing heart transplantation for congenital heart disease. J Am Coll Cardiol. 2009;54(2):160–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.CrossRefGoogle Scholar
  9. 9.
    Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17(1):11–22.PubMedCrossRefGoogle Scholar
  10. 10.
    Simpson DL, et al. A strong regenerative ability of cardiac stem cells derived from neonatal hearts. Circulation. 2012;126(11 Suppl 1):S46–53.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Nerem RM. Tissue engineering in the USA. Med Biol Eng Comput. 1992;30(4):CE8–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Brennan MP, et al. Tissue-engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann Surg. 2008;248(3):370–7.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Menzoian JO, Koshar AL, Rodrigues N. Alexis Carrel, Rene Leriche, Jean Kunlin, and the history of bypass surgery. J Vasc Surg. 2011;54(2):571–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Blakemore AH, Voorhees AB Jr. The use of tubes constructed from vinyon N cloth in bridging arterial defects; experimental and clinical. Ann Surg. 1954;140(3):324–34.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kieffer E, et al. Allograft replacement for infrarenal aortic graft infection: early and late results in 179 patients. J Vasc Surg. 2004;39(5):1009–17.PubMedCrossRefGoogle Scholar
  16. 16.
    van Brakel TJ, et al. High incidence of Dacron conduit stenosis for extracardiac Fontan procedure. J Thorac Cardiovasc Surg. 2014;147(5):1568–72.PubMedCrossRefGoogle Scholar
  17. 17.
    Robbers-Visser D, et al. Results of staged total cavopulmonary connection for functionally univentricular hearts; comparison of intra-atrial lateral tunnel and extracardiac conduit. Eur J Cardiothorac Surg. 2010;37(4):934–41.PubMedCrossRefGoogle Scholar
  18. 18.
    Klinkert P, et al. Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur J Vasc Endovasc Surg. 2004;27(4):357–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Herring M, Gardner A, Glover J. Seeding human arterial prostheses with mechanically derived endothelium. The detrimental effect of smoking. J Vasc Surg. 1984;1(2):279–89.PubMedCrossRefGoogle Scholar
  20. 20.
    Chlupac J, Filova E, Bacakova L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res. 2009;58(Suppl 2):S119–39.PubMedGoogle Scholar
  21. 21.
    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Greisler HP. Arterial regeneration over absorbable prostheses. Arch Surg. 1982;117(11):1425–31.PubMedCrossRefGoogle Scholar
  23. 23.
    Shinoka T, et al. Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg. 1998;115(3):536–45; discussion 545–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Shin’oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N Engl J Med. 2001;344(7):532–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Naito Y, et al. Successful clinical application of tissue-engineered graft for extracardiac Fontan operation. J Thorac Cardiovasc Surg. 2003;125(2):419–20.PubMedCrossRefGoogle Scholar
  26. 26.
    Hibino N, et al. Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg. 2010;139(2):431–6, 436 e1–2PubMedCrossRefGoogle Scholar
  27. 27.
    Sugiura T, et al. Tissue-engineered vascular grafts in children with congenital heart disease: intermediate term follow-up. Semin Thorac Cardiovasc Surg. 2018;30(2):175–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hibino N, et al. Tissue-engineered vascular grafts form neovessels that arise from regeneration of the adjacent blood vessel. FASEB J. 2011;25(8):2731–9.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Roh JD, et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci U S A. 2010;107(10):4669–74.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lee YU, et al. Rational design of an improved tissue-engineered vascular graft: determining the optimal cell dose and incubation time. Regen Med. 2016;11(2):159–67.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Olausson M, et al. Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study. Lancet. 2012;380(9838):230–7.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Meyer SR, et al. Comparison of aortic valve allograft decellularization techniques in the rat. J Biomed Mater Res A. 2006;79(2):254–62.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Allaire E, et al. The immunogenicity of the extracellular matrix in arterial xenografts. Surgery. 1997;122(1):73–81.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Syedain Z, et al. Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs. Nat Commun. 2016;7:12951.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Syedain ZH, et al. Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Eng Part A. 2014;20(11–12):1726–34.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Bockeria LA, et al. Total cavopulmonary connection with a new bioabsorbable vascular graft: first clinical experience. J Thorac Cardiovasc Surg. 2017;153(6):1542–50.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Itoh M, et al. Scaffold-free tubular tissues created by a bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS One. 2015;10(9):e0136681.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Itoh M, et al. Correction: scaffold-free tubular tissues created by a bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS One. 2015;10(12):e0145971.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231(4736):397–400.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Pluchinotta FR, et al. Surgical atrioventricular valve replacement with melody valve in infants and children. Circ Cardiovasc Interv. 2018;11(11):e007145.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Murray G. Homologous aortic-valve-segment transplants as surgical treatment for aortic and mitral insufficiency. Angiology. 1956;7(5):466–71.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Musci M, et al. Homograft aortic root replacement in native or prosthetic active infective endocarditis: twenty-year single-center experience. J Thorac Cardiovasc Surg. 2010;139(3):665–73.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Yankah AC, et al. Homograft reconstruction of the aortic root for endocarditis with periannular abscess: a 17-year study. Eur J Cardiothorac Surg. 2005;28(1):69–75.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Gulbins H, et al. Mitral valve surgery utilizing homografts: early results. J Heart Valve Dis. 2000;9(2):222–9.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Emmert MY, et al. Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Sci Transl Med. 2018;10(440):eaan4587.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Shinoka T, et al. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg. 1995;60(6 Suppl):S513–6.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Steinhoff G, et al. Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation. 2000;102(19 Suppl 3):III50–5.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Dohmen PM, et al. Ross operation with a tissue-engineered heart valve. Ann Thorac Surg. 2002;74(5):1438–42.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Cebotari S, et al. Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation. 2006;114(1 Suppl):I132–7.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Simon P, et al. Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg. 2003;23(6):1002–6; discussion 1006.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Iop L, et al. Decellularized cryopreserved allografts as off-the-shelf allogeneic alternative for heart valve replacement: in vitro assessment before clinical translation. J Cardiovasc Transl Res. 2017;10(2):93–103.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Cebotari S, et al. Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artif Organs. 2010;34(3):206–10.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Mitchell RN, Jonas RA, Schoen FJ. Pathology of explanted cryopreserved allograft heart valves: comparison with aortic valves from orthotopic heart transplants. J Thorac Cardiovasc Surg. 1998;115(1):118–27.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Goffin YA, et al. Morphologic study of homograft valves before and after cryopreservation and after short-term implantation in patients. Cardiovasc Pathol. 1997;6(1):35–42.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Fallon AM, et al. In vivo remodeling potential of a novel bioprosthetic tricuspid valve in an ovine model. J Thorac Cardiovasc Surg. 2014;148(1):333–340 e1.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Zafar F, et al. Physiological growth, Remodeling potential, and preserved function of a novel bioprosthetic tricuspid valve: tubular bioprosthesis made of small intestinal submucosa-derived extracellular matrix. J Am Coll Cardiol. 2015;66(8):877–88.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Baker RS, et al. Tubular bioprosthetic tricuspid valve implant demonstrates chordae formation and no calcification: long-term follow-up. J Am Coll Cardiol. 2017;70(19):2456–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Guariento A, et al. Novel valve replacement with an extracellular matrix scaffold in an infant with single ventricle physiology. Cardiovasc Pathol. 2016;25(2):165–8.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Bibevski S, Levy A, Scholl FG. Mitral valve replacement using a handmade construct in an infant. Interact Cardiovasc Thorac Surg. 2017;24(4):639–40.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Feins EN, et al. A growth-accommodating implant for paediatric applications. Nat Biomed Eng. 2017;1:818–25.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bergmann O, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lunde K, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355(12):1199–209.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Schachinger V, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355(12):1210–21.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Zhang S, et al. Impact of timing on efficacy and safetyof intracoronary autologous bone marrow stem cells transplantation in acute myocardial infarction: a pooled subgroup analysis of randomized controlled trials. Clin Cardiol. 2009;32(8):458–66.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Hare JM, et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012;308(22):2369–79.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Makkar RR, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895–904.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Malliaras K, et al. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol. 2014;63(2):110–22.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Liu YW, et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol. 2018;36(7):597–605.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Wilmut I, et al. Development of a global network of induced pluripotent stem cell haplobanks. Regen Med. 2015;10(3):235–8.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Nakatsuji N, Nakajima F, Tokunaga K. HLA-haplotype banking and iPS cells. Nat Biotechnol. 2008;26(7):739–40.PubMedCrossRefGoogle Scholar
  71. 71.
    Lacis A, Erglis A. Intramyocardial administration of autologous bone marrow mononuclear cells in a critically ill child with dilated cardiomyopathy. Cardiol Young. 2011;21(1):110–2.PubMedCrossRefGoogle Scholar
  72. 72.
    Olgunturk R, et al. Peripheric stem cell transplantation in children with dilated cardiomyopathy: preliminary report of first two cases. Pediatr Transplant. 2010;14(2):257–60.PubMedCrossRefGoogle Scholar
  73. 73.
    Rupp S, et al. Intracoronary bone marrow cell application for terminal heart failure in children. Cardiol Young. 2012;22(5):558–63.PubMedCrossRefGoogle Scholar
  74. 74.
    Limsuwan A, et al. Transcoronary bone marrow-derived progenitor cells in a child with myocardial infarction: first pediatric experience. Clin Cardiol. 2010;33(8):E7–12.PubMedCrossRefGoogle Scholar
  75. 75.
    Bergmane I, et al. Follow-up of the patients after stem cell transplantation for pediatric dilated cardiomyopathy. Pediatr Transplant. 2013;17(3):266–70.PubMedCrossRefGoogle Scholar
  76. 76.
    Burkhart HM, et al. Regenerative therapy for hypoplastic left heart syndrome: first report of intraoperative intramyocardial injection of autologous umbilical-cord blood-derived cells. J Thorac Cardiovasc Surg. 2015;149(3):e35–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Rupp S, et al. A regenerative strategy for heart failure in hypoplastic left heart syndrome: intracoronary administration of autologous bone marrow-derived progenitor cells. J Heart Lung Transplant. 2010;29(5):574–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Qureshi MY, et al. Cell-based therapy for myocardial dysfunction after Fontan operation in hypoplastic left heart syndrome. Mayo Clin Proc Innov Qual Outcomes. 2017;1(2):185–91.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Ishigami S, et al. Intracoronary autologous cardiac progenitor cell transfer in patients with hypoplastic left heart syndrome: the TICAP prospective phase 1 controlled trial. Circ Res. 2015;116(4):653–64.PubMedCrossRefGoogle Scholar
  80. 80.
    Tarui S, et al. Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: three-year follow-up of the transcoronary infusion of cardiac progenitor cells in patients with single-ventricle physiology (TICAP) trial. J Thorac Cardiovasc Surg. 2015;150(5):1198–207. 1208 e1-2PubMedCrossRefGoogle Scholar
  81. 81.
    Ishigami S, et al. Intracoronary cardiac progenitor cells in single ventricle physiology: the PERSEUS (cardiac progenitor cell infusion to treat univentricular heart disease) randomized phase 2 trial. Circ Res. 2017;120(7):1162–73.PubMedCrossRefGoogle Scholar
  82. 82.
    Oh H. Cell therapy trials in congenital heart disease. Circ Res. 2017;120(8):1353–66.PubMedCrossRefGoogle Scholar
  83. 83.
    Tsilimigras DI, et al. Stem cell therapy for congenital heart disease: a systematic review. Circulation. 2017;136(24):2373–85.PubMedCrossRefGoogle Scholar
  84. 84.
    Dow J, et al. Washout of transplanted cells from the heart: a potential new hurdle for cell transplantation therapy. Cardiovasc Res. 2005;67(2):301–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Hirt MN, Hansen A, Eschenhagen T. Cardiac tissue engineering: state of the art. Circ Res. 2014;114(2):354–67.PubMedCrossRefGoogle Scholar
  86. 86.
    Levit RD, et al. Cellular encapsulation enhances cardiac repair. J Am Heart Assoc. 2013;2(5):e000367.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Gerbin KA, et al. Enhanced electrical integration of engineered human myocardium via intramyocardial versus epicardial delivery in infarcted rat hearts. PLoS One. 2015;10(7):e0131446.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Zimmermann WH, et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med. 2006;12(4):452–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Sekine H, et al. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation. 2008;118(14 Suppl):S145–52.PubMedCrossRefGoogle Scholar
  90. 90.
    Sekine H, et al. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun. 2013;4:1399.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Riegler J, et al. Cardiac tissue slice transplantation as a model to assess tissue-engineered graft thickness, survival, and function. Circulation. 2014;130(11 Suppl 1):S77–86.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Noguchi R, et al. Development of a three-dimensional pre-vascularized scaffold-free contractile cardiac patch for treating heart disease. J Heart Lung Transplant. 2016;35(1):137–45.PubMedCrossRefGoogle Scholar
  93. 93.
    Ong CS, et al. Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived Cardiomyocytes. Sci Rep. 2017;7(1):4566.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ye L, et al. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell. 2014;15(6):750–61.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Hata H, et al. Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacing-induced canine heart failure model. J Thorac Cardiovasc Surg. 2006;132(4):918–24.PubMedCrossRefGoogle Scholar
  96. 96.
    Miyagawa S, et al. Impaired myocardium regeneration with skeletal cell sheets--a preclinical trial for tissue-engineered regeneration therapy. Transplantation. 2010;90(4):364–72.PubMedCrossRefGoogle Scholar
  97. 97.
    Sawa Y, et al. Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg Today. 2012;42(2):181–4.PubMedCrossRefGoogle Scholar
  98. 98.
    Sawa Y, et al. Safety and efficacy of autologous skeletal myoblast sheets (TCD-51073) for the treatment of severe chronic heart failure due to ischemic heart disease. Circ J. 2015;79(5):991–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Menasche P, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J. 2015;36(30):2011–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elda Dzilic
    • 1
    • 2
  • Stefanie Doppler
    • 1
    • 2
  • Rüdiger Lange
    • 1
    • 3
  • Markus Krane
    • 1
    • 2
    • 3
  1. 1.Department of Cardiovascular SurgeryGerman Heart Center Munich at the Technische Universität MünchenMunichGermany
  2. 2.Insure (Institute for Translational Cardiac Surgery), Department of Cardiovascular Surgery, German Heart CenterTechnische Universität MünchenMunichGermany
  3. 3.DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart AllianceMunichGermany

Personalised recommendations