Advertisement

Mungbean Genome and Synteny with Other Genomes

  • Yang Jae Kang
  • Jungmin HaEmail author
Chapter
  • 29 Downloads
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Mungbean (Vigna radiata (L.) R. Wilczek var. radiata) is an important source of protein and carbohydrate in Asia. Despite its importance in the diet of the world’s populace, genetic and genomic information of mungbean had been scarce compared to other legumes such as soybean or chickpea. The publication of mungbean reference genome sequence in 2014 has allowed diverse genetic and genomic studies in mungbean and its close relative legume species. The genome of adzuki bean (Vigna angularis) has been sequenced and assembled using the synteny relationship with mungbean genome and genetic information in soybean has been transferred to mungbean genome through translational genomics approach. Within a relatively short period time, a large amount of genetic and genomic resources has been accumulated in mungbean. To make use of the information and develop genomics-based breeding programs, it is essential to construct a data hub to share the information. Strong genomic resources and databases will accelerate mungeban breeding programs in the near future.

Keywords

Mungbean Genome Synteny Genomic resources Breeding 

References

  1. An YC, Goettel W, Han Q et al (2017) Dynamic changes of genome-wide dna methylation during soybean seed development. Sci Rep 7:12263CrossRefGoogle Scholar
  2. Bertioli DJ, Cannon SB, Froenicke L et al (2015) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 47:438Google Scholar
  3. Burton JN, Adey A, Patwardhan RP et al (2013) Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol 31:1119CrossRefGoogle Scholar
  4. Cao D, Li H, Yi J et al (2011) Antioxidant properties of the mung bean flavonoids on alleviating heat stress. PLoS ONE 6:e21071CrossRefGoogle Scholar
  5. Chen H, Wang L, Wang S et al (2015) Transcriptome sequencing of mung bean (Vigna radiata L.) genes and the identification of EST-SSR markers. PLoS One 10:e0120273CrossRefGoogle Scholar
  6. Chen J, Somta P, Chen X et al (2016) Gene mapping of a mutant mungbean (Vigna radiata L.) using new molecular markers suggests a gene encoding a yuc4-like protein regulates the chasmogamous flower trait. Front Plant Sci 7:830Google Scholar
  7. Cheng C, Krishnakumar V, Chan AP et al (2017) Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J 89:789–804CrossRefGoogle Scholar
  8. DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243CrossRefGoogle Scholar
  9. Do Kim K, Shin JH, Van K et al (2009) Dynamic rearrangements determine genome organization and useful traits in soybean. Plant Physiol 151:1066–1076CrossRefGoogle Scholar
  10. Islam A, Blair MW (2018) Molecular Characterization of mung bean Germplasm from the USDA Core Collection Using Newly Developed KASP-based SNP Markers. Crop SciGoogle Scholar
  11. Jiao K, Li X, Guo Y et al (2019) Regulation of compound leaf development in mungbean (Vigna radiata L.) by CUP-SHAPED COTYLEDON/NO APICAL MERISTEM (CUC/NAM) gene. Planta 1–10Google Scholar
  12. Kang YJ, Bae A, Shim S et al (2017) Genome-wide DNA methylation profile in mungbean. Sci Rep 7:40503CrossRefGoogle Scholar
  13. Kang YJ, Kim KH, Shim S et al (2012) Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol 12:139CrossRefGoogle Scholar
  14. Kang YJ, Kim SK, Kim MY et al (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5:5443CrossRefGoogle Scholar
  15. Kang YJ, Satyawan D, Shim S et al (2015) Draft genome sequence of adzuki bean. Vigna angularis. Sci Rep 5:8069.  https://doi.org/10.1038/srep08069CrossRefPubMedGoogle Scholar
  16. Lestari P, Kim SK, Kang YJ et al (2014) Genetic diversity of mungbean (Vigna radiata L.) germplasm in Indonesia. Plant Genet Resour 12:S91–S94CrossRefGoogle Scholar
  17. Li S-W, Shi R-F, Leng Y (2015) De novo characterization of the mung bean transcriptome and transcriptomic analysis of adventitious rooting in seedlings using RNA-Seq. PLoS ONE 10:e0132969CrossRefGoogle Scholar
  18. Liu M-S, Kuo TC-Y, Ko C-Y et al (2016) Genomic and transcriptomic comparison of nucleotide variations for insights into bruchid resistance of mungbean (Vigna radiata [L.] R. Wilczek). BMC Plant Biol 16:46Google Scholar
  19. Muñoz-Amatriaín M, Mirebrahim H, Xu P et al (2017) Genome resources for climate-resilient cowpea, an essential crop for food security. Plant J 89:1042–1054CrossRefGoogle Scholar
  20. Paterson AH, Freeling M, Tang H, Wang X (2010) Insights from the comparison of plant genome sequences. Annu Rev Plant Biol 61:349–372CrossRefGoogle Scholar
  21. Sakai H, Naito K, Ogiso-Tanaka E et al (2015) The power of single molecule real-time sequencing technology in the de novo assembly of a eukaryotic genome. Sci Rep 5:16780.  https://doi.org/10.1038/srep16780CrossRefPubMedPubMedCentralGoogle Scholar
  22. Sangiri C, Kaga A, Tomooka N et al (2008) Genetic diversity of the mungbean (Vigna radiata, Leguminosae) genepool on the basis of microsatellite analysis. Aust J Bot 55:837–847CrossRefGoogle Scholar
  23. Sato S, Nakamura Y, Kaneko T et al (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239CrossRefGoogle Scholar
  24. Schafleitner R, Nair RM, Rathore A et al (2015) The AVRDC–The World Vegetable Center mungbean (Vigna radiata) core and mini core collections. BMC Genom 16:344CrossRefGoogle Scholar
  25. Schmitz RJ, He Y, Valdés-López O et al (2013) Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome ResGoogle Scholar
  26. Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183.  https://doi.org/10.1038/nature08670CrossRefPubMedGoogle Scholar
  27. Shen Y, Zhang J, Liu Y et al (2018) DNA methylation footprints during soybean domestication and improvement. Genome Biol 19:128CrossRefGoogle Scholar
  28. Srivastava R, Kumar S, Kobayashi Y et al (2018) Comparative genome-wide analysis of WRKY transcription factors in two Asian legume crops: Adzuki bean and Mung bean. Sci Rep 8:16971CrossRefGoogle Scholar
  29. Tian X, Li S, Liu Y, Liu X (2016) Transcriptomic profiling reveals metabolic and regulatory pathways in the desiccation tolerance of Mungbean (Vigna radiata [L.] R. Wilczek). Front Plant Sci 7:1921Google Scholar
  30. Varshney RK, Chen W, Li Y et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83CrossRefGoogle Scholar
  31. Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240CrossRefGoogle Scholar
  32. Young ND, Debellé F, Oldroyd GE et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of Applied Life Science DepartmentGyeongsang National University, PMBBRCJinjuRepublic of Korea
  2. 2.Division of Life Science DepartmentGyeongsang National UniversityJinjuRepublic of Korea
  3. 3.Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoulRepublic of Korea
  4. 4.Plant Genomics and Breeding Institute, Seoul National UniversitySeoulRepublic of Korea

Personalised recommendations