Genomic Approaches to Biotic Stresses

  • Kularb Laosatit
  • Prakit SomtaEmail author
  • Xin Chen
  • Peerasak Srinives
Part of the Compendium of Plant Genomes book series (CPG)


Average seed yield of mungbean (Vigna radiata) grown in major growing countries is low, being only about one-third to one-fourth of its yield potential. A main factor causing the low yield in mungbean is biotic stresses (disease infection and insect infestation) that happen at all stages of plant growth and development and after harvest. Common and important diseases and insect pests of mungbean include powdery mildew, Cercospora leaf spot, yellow mosaic virus, bruchids and pod sucking bugs. Employing host plant resistance is the best way to manage the diseases and insect pests. However, progress in the development of new mungbean cultivar(s) with the biotic resistance is slow due to bottleneck in evaluation for the resistance which is environmental-dependent or time-consuming, although germplasm with immune or highly or moderately resistance for these biotic stresses is available and the genetics of the resistance appears to be simple. Genomic approaches, especially gene mapping and marker-assisted selection, are promising in the acceleration of cultivar development for biotic stress resistance in mungbean. Mungbean is a slow runner in genomics research, although it is among the forefront crops targeted for genome analysis at the beginning of the crop genomics era; e.g., powdery mildew resistance and bruchid resistance in mungbean are among the plant diseases and insects being investigated nearly 30 years ago. However, the recent release of a reference genome sequence of mungbean and current advanced sequencing technology has enabled fast and efficient DNA marker development, fine-mapping and identification of candidate gene(s) for the biotic resistance in mungbean possible. This chapter covers past, present and future research on molecular and genomics approaches to biotic stresses for mungbean genetic improvement.


Mungbean Biotic stress Insects Diseases Resistance 


  1. Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Microbe Interact 21:507–517PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alam AM, Somta P, Srinives P (2014a) Generation mean and path analyses of reaction to mungbean yellow mosaic virus (MYMV) and yield-related traits in mungbean (Vigna radiata (L.) Wilczek). SABRAO J Breed Genet 46:150–159Google Scholar
  3. Alam AM, Somta P, Srinives P (2014b) Identification and confirmation of quantitative trait loci controlling resistance to mungbean yellow mosaic disease in mungbean [Vigna radiata (L.) Wilczek]. Mol Breed 34:1497–1506CrossRefGoogle Scholar
  4. Ali MM, Sabir IA, Ahmed HM (1997) The mungbean green revolution in Pakistan. Asian Vegetable Research and Development Centre, ShanhuaGoogle Scholar
  5. Ammavasai S, Phogat DS, Solanki IS (2004) Inheritance of resistance to mungbean yellow mosaic virus (MYMV) in green gram (Vigna radiata (L.) Wilczek). Indian J Genet 64:145–146Google Scholar
  6. Anton KW, Halperin J, Calderon M (1997) An annotated list of the Bruchidae (Coleoptera) of Israel and adjacent areas. Isr J Entomol 31:59–96Google Scholar
  7. Appiano M, Pavan S, Catalano D, Zheng Z, Bracuto V, Lotti C et al (2015) Identification of candidate MLO powdery mildew susceptibility genes in cultivated Solanaceae and functional characterization of tobacco NtMLO1. Transgenic Res 24:1–12CrossRefGoogle Scholar
  8. Arora GL (1977) Bruchidae of Northwest India. Orient Insects 7:1–132CrossRefGoogle Scholar
  9. AVRDC (1974) Progress report 1974. Asian Vegetable Research and Development Center, Shanhua, Taiwan, Republic of ChinaGoogle Scholar
  10. AVRDC (1978) Progress report, 1978. Asian Vegetable Research and Development Center, Shanhua, Taiwan, Republic of ChinaGoogle Scholar
  11. AVRDC (1980) Progress report 1980. Asian Vegetable Research and Development Center, Shanhua, Taiwan, Republic of ChinaGoogle Scholar
  12. AVRDC (1984) Progress report 1984. Asian Vegetable Research and Development Center, Shanhua, Taiwan, Republic of ChinaGoogle Scholar
  13. Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstädler A, Lotti C et al (2008) Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Mol Plant Microbe Interact 21:30–39PubMedCrossRefGoogle Scholar
  14. Bhanu AN, Kumar P, Singh MN, Srivastava K, Hemantaranjan A (2017) Assessment of genetic purity of inter-specific F1 hybrids involving Vigna radiata and Vigna umbellata. J Exp Biol Agric Sci 5:5Google Scholar
  15. Bhanu AN, Singh MN, Srivastava K (2019) Genetic analysis of gene-specific resistance to mungbean yellow mosaic virus in mungbean (Vigna radiata). Plant Breed 138:202–206CrossRefGoogle Scholar
  16. Boutin SR, Young ND, Olson TC, Yu ZH, Shoemaker RC, Vallejos CE (1995) Genome conservation among three legume genera detected with DNA markers. Genome 38:928–937PubMedCrossRefGoogle Scholar
  17. Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A et al (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705PubMedCrossRefGoogle Scholar
  18. Cayalvizhi BS, Nagarajan P, Raveendran M, Rabindran R, Kannan BJR, Senthil N (2017) Understanding the inheritance of mungbean yellow mosaic virus (MYMV) resistance in mungbean (Vigna radiata L. Wilczek). Mol Breed 37:63Google Scholar
  19. Chaitieng B, Kaga A, Han OK, Wang X, Wongkaew S, Laosuwan P, Tomooka N, Vaughan DA (2002) Mapping a new source of resistance to powdery mildew in mungbean. Plant Breed 121:521–525CrossRefGoogle Scholar
  20. Chankaew S, Somta P, Sorajjapinun W, Srinives P (2011) Quantitative trait loci mapping of Cercospora leaf spot resistance in mungbean, Vigna radiata (L.) Wilczek. Mol Breed 28:255–264CrossRefGoogle Scholar
  21. Chankaew S, Somta P, Isemura T, Tomooka N, Kaga A, Vaughan DA, Srinives P (2013) Quantitative trait locus mapping reveals conservation of major and minor loci for powdery mildew resistance in four sources of resistance in mungbean [Vigna radiata (L.) Wilczek]. Mol Breed 32:121–130CrossRefGoogle Scholar
  22. Chathiranrat N, Nitisit S, Chaiyapan C, Wansuriwong N, Papan P, Tantasawat PA (2018) Selection of mungbean resistant to powdery mildew in BC1F1 progenies based on ISSR and ISSR-RGA markers. IJASEAT 6:73–77Google Scholar
  23. Chen KC, Lin CY, Kuan CC, Sung HY, Chen CS (2002) A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid. J Agric Food Chem 50:7258–7263PubMedCrossRefGoogle Scholar
  24. Chen HM, Liu CA, Kuo CG, Chien CM, Sun HC, Huang CC, Lin YC, Ku HM (2007) Development of a molecular marker for a bruchid (Callosobruchus chinensis L.) resistance gene in mungbean. Euphytica 157:113–122CrossRefGoogle Scholar
  25. Chen HM, Ku HS, Schafleitner R, Bains TS, Kuo GC, Liu CA, Nair RM (2013) The major quantitative trait locus for mungbean yellow mosaic Indian virus resistance is tightly linked in repulsion phase to the major bruchid resistance locus in a cross between mungbean [Vigna radiata (L.) Wilczek] and its wild relative Vigna radiata ssp. sublobata. Euphytica 192:205–216CrossRefGoogle Scholar
  26. Chotechung S, Somta P, Chankaew S, Srinives P, Somta P (2011) Identification of DNA markers associated with bruchid resistance in mungbean. Khon Khan Agri J 39:221–226Google Scholar
  27. Chotechung S, Somta P, Chen J, Yimram T, Chen X, Srinives P (2016) A gene encoding a polygalacturonase-inhibiting protein (PGIP) is a candidate gene for bruchid (Coleoptera: Bruchidae) resistance in mungbean (Vigna radiata). Theor Appl Genet 129:1673–1683CrossRefGoogle Scholar
  28. Clarry S (2016) The rise and rise of mungbeans. In: GroundCover Supplement Issue 125 November–December. Grains Research and Development Corporation. Available online at: Accessed 5 Dec 2018
  29. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 12(363):557–572CrossRefGoogle Scholar
  30. Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P, Somerville SC, Panstruga R (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Genet 38:716–720PubMedCrossRefPubMedCentralGoogle Scholar
  31. Das G, Patra JK, Baek KH (2017) Insight into MAS: a molecular tool for development of stress resistant and quality of rice through gene stacking. Front Plant Sci 8:985PubMedPubMedCentralCrossRefGoogle Scholar
  32. Deshmukh R, Singh VK, Singh BD (2014) Comparative phylogenetic analysis of genome-wide Mlo gene family members from Glycine max and Arabidopsis thaliana. Mol Genet Genomics 289:345–359PubMedCrossRefPubMedCentralGoogle Scholar
  33. Desroches P, Elshazly E, Mandon N, Duc G, Huignard J (1995) Development of Callosobruchus chinensis (L) and C. maculatus (F) (Coleoptera, Bruchidae) in seeds of Vicia faba L. differing in their tannin, vicine and convicine contents. J Stored Prod Res 31:83–89CrossRefGoogle Scholar
  34. Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G et al (2003) Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J Mol Evol 56:77–88PubMedCrossRefPubMedCentralGoogle Scholar
  35. Dhole VJ, Reddy KS (2013) Development of a SCAR marker linked with a MYMV resistance gene in mungbean (Vigna radiata). Plant Breed 132:127–132CrossRefGoogle Scholar
  36. Duangsong U, Kaewwongwal A, Somta P, Chankaew S, Srinives P (2016) Identification of a major QTL for resistance to Cercospora leaf spot disease in cowpea (Vigna unguiculata (L.) Walp.) revealed common genomic region with that for the resistance to angular leaf spot in common bean (Phaseolus vulgaris L.). Euphytica 209:199–207CrossRefGoogle Scholar
  37. Fernandez GCJ, Shanmugasundaram S (1988) The AVRDC mungbean improvement programme: the past, present and future. In: Proceedings of the 2nd international mungbean sypmposium. Asian Vegetable Research and Development Center, Shanhua, Tainan, Taiwan, pp 58–70Google Scholar
  38. Frati F, Galletti R, De Lorenzo G, Salerno G, Conti E (2006) Activity of endo-polygalacturonases in mirid bugs (Heteroptera: Miridae) and their inhibition by plant cell wall proteins (PGIPs). Eur J Entomol 103:515–522CrossRefGoogle Scholar
  39. Fujii K, Miyazaki S (1987) Infestation resistance of wild legumes (Vigna sublobata) to azuki bean weevil, Callosobruchus chinensis (L.) (Coleoptera: Bruchidae) and its relationship with cytogenetic classification. Appl Entomol Zool 22:229–230CrossRefGoogle Scholar
  40. Fujii K, Ishimoto M, Kitamura K (1989) Patterns of resistance to bean weevils (Bruchidae) in Vigna radiata mungo sublobata complex inform the breeding of new resistant varieties. Appl Ent Zool 24:126–132CrossRefGoogle Scholar
  41. Gawande VL, Patil JV (2003) Genetics of powdery mildew (Erysiphe polygoni D.C.) resistance in Mungbean (Vigna radiata (L.) Wilczek). Crop Prot 22:567–571CrossRefGoogle Scholar
  42. Gill AS, Verma MM, Dhaliwal HS, Sandhu TS (1983) Interspecific transfer of resistance to mungbean yellow mosaic virus from Vigna mungo to Vigna radiata. Current Sci 52:31–33Google Scholar
  43. Grewal JS (1978) Disease of mungbean in Indian. Proceeding of the 1st mungbean symposium. University of the Philippines, Los Banos, pp 165–168Google Scholar
  44. Grewal JS, Machendra P, Kulshrestha DP (1980) Control of Cercospora leaf spot of green gram by spraying Bavistin. Indian J Agric Sci 50:707–711Google Scholar
  45. Gupta SK, Gopalakrishna T (2010) Development of unigene-derived SSR markers in cowpea (Vigna unguiculata) and their transferability to other Vigna species. Genome 53:508–523PubMedCrossRefPubMedCentralGoogle Scholar
  46. Gupta S, Gupta DS, Anjum TK, Pratap A, Kumar J (2013) Inheritance and molecular tagging of MYMIV resistance gene in blackgram (Vigna mungo L. Hepper). Euphytica 193:27–37CrossRefGoogle Scholar
  47. Gwag JG, Chung JW, Chung HK, Lee JH, Ma KH, Dixit A, Park YJ, Cho EG, Kim TS, Lee SH (2006) Characterization of new microsatellite markers in mung bean, Vigna radiata (L.). Mol Ecol Notes 6:1132–1134CrossRefGoogle Scholar
  48. Han OK, Kaga A, Isemura T, Wang XW, Tomooka N, Vaughan DA (2005) A genetic linkage map for azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi]. Theor Appl Genet 111(7):1278–1287Google Scholar
  49. Hartman GL, Wang TC, Kim D (1993) Field evaluation of mungbeans for resistance to Cercospora leaf spot and powdery mildew. Int J Pest Manag 39:418–421CrossRefGoogle Scholar
  50. Hong MG, Kim KH, Ku JH, Jeong JK, Seo MJ, Park CH et al (2015) Inheritance and quantitative trait loci analysis of resistance genes to bruchid and bean bug in mungbean (Vigna radiata L. Wilczek). Plant Breed Biotechnol 3:39–46CrossRefGoogle Scholar
  51. Humphry ME, Magner T, McIntyre CL, Aitken EA, Liu CL (2003) Identification of major locus conferring resistance to powdery mildew (Erysiphe polygoni D.C.) in mungbean (Vigna radiata L. Wiczek) by QTL analysis. Genome 46:738–744PubMedCrossRefPubMedCentralGoogle Scholar
  52. Humphry M, Reinstädler A, Ivanov S, Bisseling T, Panstruga R (2011) Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol 12:866–878PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hussain M, Qazi J, Mansoor S, Iram S, Bashir M, Zafar Y (2004) First report of mungbean yellow mosaic India virus on mungbean in Pakistan. New Disease Rep 9:13Google Scholar
  54. Ilyas M, Qazi J, Mansoor S, Briddon RW (2010) Genetic diversity and phylogeography of begomoviruses infecting legumes in Pakistan. J Gen Virol 91:2091–2101PubMedCrossRefPubMedCentralGoogle Scholar
  55. Imrie BC, Lambrides CJ (1998) Marker-assisted selection for resistance to bruchids. In: Libas EM, Lopez KS (eds) International consultation workshop on mungbean: proceedings of the mungbean workshop, 7–11 September 1997, New Delhi, India. Asian Vegetable Research and Development Center, Tainan, Taiwan, pp 135–140Google Scholar
  56. Iqbal SM, Ghafoor A, Bashir M, Malik BA (1995) Estimation of losses in yield components of mugbean due to Cercospora leaf spot. Pakistan J Phytopath 7:80–81Google Scholar
  57. Isemura T, Kaga A, Konishi S, Ando T, Tomooka N, Han OK, Vaughan DA (2007) Genome dissection of traits related to domestication in azuki bean (Vigna angularis) and comparison with other warm season legumes. Ann Bot 100:1053–1071PubMedPubMedCentralCrossRefGoogle Scholar
  58. Isemura T, Kaga A, Tabata S, Somta P, Srinives P, Shimizu T, Jo U, Vaughan DA, Tomooka N (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS ONE 7:e41304PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ishimoto M, Kitamura K (1989) Growth inhibitory effects of an α-amylase inhibitor from kidney bean, Phaseolus vulgaris (L.) on three species of bruchids (Coleoptera: Bruchidae). Appl Ent Zool 24:281–286CrossRefGoogle Scholar
  60. Ishimoto I, Kitamura K (1991) Biochemical basis of bruchid resistance in TC1966 (Vigna radiata var. sublobata). Japan J Breed 41:408–409CrossRefGoogle Scholar
  61. Ishimoto I, Kitamura K (1993) Inhibitory effects of adzuki bean weevil-resistant mungbean seeds on growth of bean bug. Japan J Breed 43:75–80CrossRefGoogle Scholar
  62. Ishimoto M, Sato T, Chrispeels MJ, Kitamura K (2006) Bruchid resistance of transgenic azuki bean expressing seed α-amylase inhibitor of common bean. Entomol Exp Appl 79:309–315CrossRefGoogle Scholar
  63. Jeong JK, Kim YH, Hwang TY, Lee IJ, Seo BY, Moon CK, Kim CS, Kim YT, Lee HE (2015) Identification of genes and active compounds related to insect-resistance from mungbean, and analysis of their function. Final report, National Institute of Food Science and Technology, Rural Development Administration, Korea, pp 1–50Google Scholar
  64. Kadosawa T, Santa H (1981) Growth and reproduction of soybean pod bugs (Heteroptera) on seeds of legumes. Bull Chugoku Natl Agric Exp Stn Ser E 19:75–97Google Scholar
  65. Kaewwongwal A, Chen J, Somta P, Kongjaimun A, Yimram T, Chen X, Srinives P (2017) Novel alleles of two tightly linked genes encoding polygalacturonase-inhibiting proteins (VrPGIP1 and VrPGIP2) associated with the Br locus that confer bruchid (Callosobruchus spp.) resistance to mungbean (Vigna radiata) accession V2709. Front Plant Sci 8: 1692Google Scholar
  66. Kaga A, Ishimoto M (1998) Genetic localization of a bruchid resistance gene and its relationship to insecticidal cyclopeptide alkaloids, the vignatic acids in mungbean (V. radiata L. Wilczek). Mol Gen Genet 258:378–384PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kaga A, Teraishi M, Iijima N, Sugawara F, Ishimoto M (2000) Progresses in identification of the bruchid resistance gene in mungbean (Vigna radiata (L.)). In: Abstract in plant and animal genome VIII conference, SanDiego, CAGoogle Scholar
  68. Kaga A, Isemura T, Shimizu T, Somta P, Srinives P, Tabata S, Tomooa N, Vaughan DA (2011) Asian Vigna genome research. In: Tomooka N, Vaughan DA (eds) Proceedings of the 14th NIAS international workshop on genetic resources: genetic resources and comparative genomics of legumes (Glycine and Vigna). National Institute of Agrobiological Sciences, Tsukuba, Japan, pp 33–39Google Scholar
  69. Kang CH, Huh HS, Park CG (2003) Review on true bugs infesting tree fruits, upland crops, and weeds in Korea. Korean J Appl Entomol 42:269–277Google Scholar
  70. Kang YJ, Kim S, Kim MY, Lestari P, Kim KH, Ha BK et al (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5:5443PubMedPubMedCentralCrossRefGoogle Scholar
  71. Karthikeyan K, Shobhana VG, Sudha M, Raveendran M, Senthil N, Pandiyan M, Nagarajan P (2014) Mungbean yellow mosaic virus (MYMV): a threat to green gram (Vigna radiata). Int J Pest Manag 60:314–324CrossRefGoogle Scholar
  72. Kasettranan W, Somta P, Sirnives P (2009) Genetics of the resistance to powdery mildew disease in mungbean (Vigna radiate (L.) Wilczek). J Crop Sci Biotech 12:37–42CrossRefGoogle Scholar
  73. Kasettranan W, Somta P, Srinives P (2010) Mapping of quantitative trait loci controlling powdery mildew resistance in mungbean (Vigna radiata (L.) Wilczek). J Crop Sci Biotechnol 13:155–161CrossRefGoogle Scholar
  74. Kashiwaba K, Tomooka N, Kaga A, Han OK, Vaughan DA (2003) Characterization of resistance to three bruchid species (Callosobruchus spp., Coleoptera, Bruchidae) in cultivated rice bean, (Vigna umbellata (Thunb.) Ohwi and Ohashi). J Econ Entomol 96:207–213CrossRefGoogle Scholar
  75. Khajudparn P, Wongkaew S, Thipyapong P (2007) Mungbean powdery mildew resistance identification of genes for powdery mildew resistance in mungbean. Afr Crop Sci Conf Proc 8:743–745Google Scholar
  76. Khan MMK, Khan A, Ishimoto M, Kitamura K, Komatsu S (2003) Proteome analysis of the relationship between bruchid-resistant and -susceptible mungbean genotypes. Plant Genet Resou 1:115–123CrossRefGoogle Scholar
  77. Khattak GSS, Haq MA, Ashraf M, Elahi T (2000) Genetics of mungbean yellow mosaic virus (MYMV) in mungbean (Vigna radiata (L.) Wilczek). J Genet Breed 54:237–243Google Scholar
  78. Khunti JP, Bhoraniya MF, Vora VD (2002) Management of powdery mildew and Cercospora leaf spot of mungbean by some systemic fungicides. J Mycol Pl Pathol 32:103Google Scholar
  79. Kitamura K, Ishimoto M, Sawa M (1988) Inheritance of resistance to infestation with azuki bean weevil in Vigna sublobata and successful incorporation to V. radiata. Jap J Breed 38:459–464CrossRefGoogle Scholar
  80. Kitamura K, Ishimoto M, Ishii S (1990) Bruchid resistance factors in Phaseolus and Vigna legumes. In: Fujii K, Gatehouse AMR, Johnson CD, Mitchel R, Yoshida T (eds) Bruchids and legumes: economics, ecology and coevolution. Kluwer Academic Publishers, Dordrecht, pp 229–240CrossRefGoogle Scholar
  81. Kitsanachandee R, Somta P, Chatchawankanphanich O, Akhtar KP, Shah TM, Nair RM, Bains TS, Sirari A, Kaur L, Srinives P (2013) Detection of quantitative trait loci for mungbean yellow mosaic India virus (MYMIV) resistance in mungbean (Vigna radiata (L.) Wilczek) in India and Pakistan. Breed Sci 63:367–373PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kongjaimun A, Kaga A, Tomooka N, Somta P, Shimizu T, Shu Y, Isemura T, Vaughan DA, Srinives P (2012) An SSR-based linkage map of yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata Sesquipedalis Group) and QTL analysis of pod length. Genome 55:81–92PubMedCrossRefGoogle Scholar
  83. Kusch S, Pesch L, Panstruga R (2016) Comprehensive phylogenetic analysis sheds light on the diversity and origin of the MLO family of integral membrane proteins. Genome Biol Evol 8:878–895PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lambrides CJ, Godwin I (2007) Mungbean. In: Kole C (ed) Genome mapping and molecular breeding in plants pulses, sugar and tuber crops, vol 3. Springer, Berlin, pp 69–90CrossRefGoogle Scholar
  85. Lambrides CJ, Imrie BC (2000) Susceptibility of mungbean varieties to the bruchid species Callsobruchus maculatus (F.), C. phaseoli (Gyll.), C. chinensis (L.), and Acanthoscelides obtectus (Say.) (Coleoptera: Chrysomelidae). Aust J Agri Res 51:85–89CrossRefGoogle Scholar
  86. Lambrides CJ, Diatloff AL, Liu CJ, Imrie BC (1999) Molecular studies in mungbean Vigna radiata. In: Proceedings of the 11th Australasian plant breeding conference, 19–23 April, Adelaide, AustraliaGoogle Scholar
  87. Lawrence PK, Koundal KR (2002) Plant protease inhibitors in control of phytophagous insects. Electron J Biotechnol 5(1):3CrossRefGoogle Scholar
  88. Leabwon U, Oupadissakoon S (1984) Inheritance of resistance to Cercospora leaf spot in mungbean. Kasetsart J (Nat Sci) 18:14–19Google Scholar
  89. Lee YH, Moon JK, Park KY, Ku JH, Yun HT, Chung WK, Kim SD, Kim HS, Kim DH, Chung MN (2000) A new mungbean cultivar with bruchid resistance, ‘Jangannogdu’. Korean J Breed 32:296–297Google Scholar
  90. Lekhi P, Gill RK, Kunal Kaur S (2018) Identification of molecular marker linked to mungbean yellow mosaic virus (MYMV) resistance in Vigna radiata (L.) Wilczek. Electr J Plant Breed 9:839–845CrossRefGoogle Scholar
  91. Li Y, Chen X, Chen Z, Cai R, Zhang H, Xiang Y (2016) Identification and expression analysis of BURP domain-containing genes in Medicago truncatula. Front Plant Sci 7:485PubMedPubMedCentralGoogle Scholar
  92. Liang D, Chen M, Qi X, Xu Q, Zhou F, Chen X (2016) QTL mapping by SLAF-seq and expression analysis of candidate genes for aphid resistance in cucumber. Front Plant Sci 7:1000PubMedPubMedCentralGoogle Scholar
  93. Lin WJ, Ko CY, Liu MS, Kuo CY, Wu DC, Chen CY et al (2016) Transcriptomic and proteomic research to explore bruchid-resistant genes in mungbean isogenic lines. J Agric Food Chem 64:6648–6658PubMedCrossRefGoogle Scholar
  94. Liu YJ, Cheng CS, Lai SM, Hsu MP, Chen CS, Lyu PC (2006) Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins: Struct, Funct, Bioinf 63:777–786CrossRefGoogle Scholar
  95. Liu MS, Kuo TCY, Ko CY, Wu DC, Li KY, Lin WJ, Lin CP, Wang YW, Schafleitner R, Lo HF, Chen CY, Chen LF (2016) Genomic and transcriptomic comparison of nucleotide variations for insights into bruchid resistance of mungbean (Vigna radiata [L.] R. Wilczek). BMC Plant Biol 16:46Google Scholar
  96. Liu CY, Su QZ, Fan BJ, Cao ZM, Zhang ZX, Wu J, Cheng XZ, Tian J (2018) Genetic mapping of bruchid resistance gene in mungbean V1128. ACTA Agron Sinica 44:1875–1881CrossRefGoogle Scholar
  97. Maiti S, Basak J, Kundagrami S, Kundu A, Pal A (2011) Molecular marker-assisted genotyping of mungbean yellow mosaic India virus resistant germplasm of mungbean and urdbean. Mol Biotechnol 47:95–104PubMedCrossRefGoogle Scholar
  98. Maiti S, Paul S, Pal A (2012) Isolation characterization and structural analysis of non-TR-NBS-LRR encoding candidate gene from MYMIV-resistant Vigna mungo. Mol Biotechnol 52:217–233PubMedCrossRefGoogle Scholar
  99. Malathi VG, John P (2009) Mungbean yellow mosaic viruses. In: Mahy BWJ, Van Regenmortal MHV (eds) Desk encyclopedia of plant and fungal virology. Academic Press, London, pp 217–226Google Scholar
  100. Malik LA, Sarwar G, Ali Y (1986) Genetic studies in mungbean (Vigna radiata (L.) Wilczek). I: Inheritance of tolerance to mungbean yellow mosaic virus and some morphological characters. Pak J Bot 18:189–198Google Scholar
  101. Mandhare VK, Suryawanshi AV (2008) Dual resistant against powdery mildew and yellow mosaic virus in greengram. Agric Sci Digest 28:39–41Google Scholar
  102. Marimuthu T, Subramanian CL, Mohan R (1981) Assessment of yield losses due to yellow mosaic infection in mungbean. Pulse Crop News Lett 1:104Google Scholar
  103. Mariyammal I, Seram D, Samyuktha SM, Karthikeyan A, Dhasarathan M, Murukarthick J, Kennedy JS, Malarvizhi D, Yang TJ, Pandiyan M, Senthil N (2019) QTL mapping in Vigna radiata × Vigna umbellata population uncovers major genomic regions associated with bruchid resistance. Mol Breed 39:110CrossRefGoogle Scholar
  104. Mathivathana MK, Murukarthick J, Karthikeyan A, Jang W, Dhasarathan M, Jagadeeshselvam N, Sudha M, Vanniarajan C, Karthikeyan G, Yang TJ, Raveendran M, Pandiyan M, Senthil N (2019) Detection of QTLs associated with mungbean yellow mosaic virus (MYMV) resistance using the interspecific cross of Vigna radiata × Vigna umbellata. J Appl Genet. Scholar
  105. Mei L, Cheng XZ, Wang SH, Wang LX, Liu CY, Sun L et al (2009) Relationship between bruchid resistance and seed mass in mungbean based on QTL analysis. Genome 52:589–596PubMedCrossRefGoogle Scholar
  106. Menancio-Hautea D, Kumar L, Danesh D, Young ND (1993) A genome map for mungbean [Vigna radiata (L.) Wilczek] based on DNA genetic markers (2 N = 2X = 22). In:O’Brien SJ (ed) Genetic maps: locus maps of complex genomes, 6th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 6.259–6.261Google Scholar
  107. Mishra SP, Asthana AN, Yadav L (1988) Inheritance of Cercospora leaf spot resistance in mungbean, Vigna radiata (L.) Wilczek. Plant Breed 100:228–229CrossRefGoogle Scholar
  108. Mishra SK, Macedo MLR, Panda SK, Panigrahi J (2018) Bruchid pest management in pulses: past practices, present status and use of modern breeding tools for development of resistant varieties. Ann Appl Biol 72:4–19CrossRefGoogle Scholar
  109. Miyagi M, Humphry M, Ma ZY, Lambrides CJ, Bateson M, Liu CJ (2004) Construction of bacterial artificial chromosome libraries and their application in developing PCR-based markers closely linked to a major locus conditioning bruchid resistance in mungbean (Vigna radiata L. Wilczek). Theor Appl Genet 110:151–156CrossRefGoogle Scholar
  110. Nair RM, Schafleitner R, Kenyon L, Srinivasan R, Easdown W, Ebert A, Hanson P (2012) Genetic improvement of mungbean. SABRAO J Breed Genet 44:177–190Google Scholar
  111. Nair RM, Götz M, Winter S, Giri RR, Boddepalli VN, Sirari A, Bains TS, Taggar GK, Dikshit HK, Aski M, Boopathi M, Swain D, Rathore A, Kumar VA, Lii EC, Kenyon L (2017) Identification of mungbean lines with tolerance or resistance to yellow mosaic in fields in India where different begomovirus species and different Bemisia tabaci cryptic species predominate. Eur J Plant Pathol 149:349–365CrossRefGoogle Scholar
  112. Nogueira FCS, Silva CP, Alexandre D, Samuels RI, Soares EL, Aragão FJL et al (2012) Global proteome changes in larvae of Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae) following ingestion of a cysteine proteinase inhibitor. Proteomics 12:2704–2715PubMedCrossRefPubMedCentralGoogle Scholar
  113. Oliveira AEA, Sales MP, Machado OLT, Fernandes KVS, Xavier-Filho J (1999) The toxicity of Jack bean (Canavalia ensiformis) cotyledon and seed coat proteins to the cowpea weevil (Callosobruchus maculatus). Entomol Eexp Appl 92:249–255CrossRefGoogle Scholar
  114. Pandey AK, Burlakoti RR, Kenyon L, Nair RM (2018) Perspectives and challenges for sustainable management of fungal diseases of mungbean [Vigna radiata (L.) Wilczek var. radiate]: a review. Front Environ Sci 6: 53Google Scholar
  115. Panizzi AR, Schaefer CW, Natuhara Y (2000) Broad-headed bugs (Alydidae). In: Schaefer CW, Panizzi AR (eds) Heteroptera of economic importance. CRC, Boca Raton, FL, pp 321–336Google Scholar
  116. Pauchet Y, Wilkinson P, Chauhan R, Ffrench CRH (2010) Diversity of beetle genes encoding novel plant cell wall degrading enzymes. PLoS ONE 5:e15635PubMedPubMedCentralCrossRefGoogle Scholar
  117. Pavan S, Jacobsen E, Visser RGF, Bai Y (2009) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  118. Pavan S, Schiavulli A, Appiano M, Marcotrigiano AR, Cillo F, Visser RGF et al (2011) Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theor Appl Genet 123:1425–1431PubMedCrossRefPubMedCentralGoogle Scholar
  119. Pedra JHF, Brandt A, Westerman R, Lobo N, Li HM, Romero SJ et al (2003) Transcriptome analysis of the cowpea weevil bruchid: identification of putative proteinases and alpha-amylases associated with food breakdown. Insect Mol Biol 12:405–412PubMedCrossRefPubMedCentralGoogle Scholar
  120. Pham A-T, Harris DK, Buck J, Hoskins A, Serrano J, Abdel-Haleem H, Cregan P, Song Q, Boerma HR, Li Z (2015) Fine mapping and characterization of candidate genes that control resistance to Cercospora sojina K. Hara in two soybean germplasm accessions. PLoS ONE 10(5):e0126753. Scholar
  121. Poolsawat O, Kativat C, Arsakit K, Tantasawat PA (2017) Identification of quantitative trait loci associated with powdery mildew resistance in mungbean using ISSR and ISSR-RGA markers. Mol Breed 37:150CrossRefGoogle Scholar
  122. Rani A, Kumar V, Gill BS, Rathi P, Shukla S, Singh RK, Husain SM (2017) Linkage mapping of mungbean yellow mosaic India virus (MYMIV) resistance gene in soybean. Breed Sci 67:95–100PubMedPubMedCentralCrossRefGoogle Scholar
  123. Reddy KS (2009) A new mutant for yellow mosaic virus resistance in mungbean (Vigna radiata L Wilczek) variety SML-668 by recurrent gamma-ray irradiation. In: Shu QY (ed) Induced plant mutation in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 361–362Google Scholar
  124. Reddy KS, Pawar SE, Bhatia CR (1987) Screening for powdery mildew (Erysiphe polygoni D.C.) resistance in mungbean (Vigna radiata(L.) Wilczek) using excised leaves. Proc Indian Acad Sci (Plant Sci) 97:365–369Google Scholar
  125. Reddy KS, Pawar SE, Bhatia CR (1994) Inheritance of powdery mildew (Erysiphe polygoni D.C.) resistance in mungbean [Vigna radiata(L.) Wilczek]. Theor Appl Genet 88:945–948CrossRefGoogle Scholar
  126. Rispail N, Rubiales D (2016) Genome-wide identification and comparison of legume MLO gene family. Sci Rep 6:32673PubMedPubMedCentralCrossRefGoogle Scholar
  127. Sales MP, Gerhardt IR, Grossi-de-Sa MF, Xavier J (2000) Do legume storage proteins play a role in defending seeds against bruchids? Plant Physiol 124:515–22PubMedPubMedCentralCrossRefGoogle Scholar
  128. Sarkar S, Ghosh S, Chatterjee M, Das P, Lahari T, Maji A, Mondal N, Pradhan KK, Bhattacharyya S (2011) Molecular markers linked with bruchid resistance in Vigna radiata var. sublobata and their validation. J Plant Biochem Biotechnol 20:155–160CrossRefGoogle Scholar
  129. Schafleitner R, Huang S, Chu S, Yen J, Lin C, Yan M, Krishnan B, Liu M, Lo H, Chen C, Chen O, Wu D, Bui TGT, Ramasamy S, Tung C, Nair R (2016) Identification of single nucleotide polymorphism markers associated with resistance to bruchids (Callosobruchus spp.) in wild mungbean (Vigna radiata var. sublobata) and cultivated V. radiata through genotyping by sequencing and quantitative trait locus analysis BMC Plant Biol 16:159.
  130. Seehalak W, Somta P, Sommanas W, Srinives P (2009) Microsatellite markers for mungbean developed from sequence database. Mol Ecol Resour 9:862–864PubMedCrossRefGoogle Scholar
  131. Sehgal VK, Ujagir R (1988) Insect pests and pest management of mungbean in India. In: Shanmugasundaram S, McLean BT (eds) Mungbean: proceedings of the second international symposium. AVRDC, Tainan, Taiwan, pp 335–328Google Scholar
  132. Selvi R, Muthiah AR, Manivannan N (2006) Tagging of RAPD marker for MYMV resistance in mungbean (Vigna radiata (L.) Wilczek). Asian J Plant Sci 5:277–280CrossRefGoogle Scholar
  133. Shade RE, Schroeder HE, Pueyo JJ, Tabe LL, Murdock TJV, Higgins MJ, Chrispeels MJ (1994) Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Nature Biotech 12:793–796CrossRefGoogle Scholar
  134. Shao Y, Wei G, Wang L, Dong Q, Zhao Y, Chen B et al (2011) Genome-wide analysis of BURP domain-containing genes in Populus trichocarpa. J Integr Plant Biol 53:743–755PubMedPubMedCentralGoogle Scholar
  135. Shukla GP, Pandya BP (1985) Resistance to yellow mosaic in greengram. SABRAO J Breed Genet 17:165–171Google Scholar
  136. Singh G, Brar JS, Sharma YR, Kuar L (1998) Enhancement of mungbean yellow mosaic virus resistance through inter/intraspecific hybridization and mutation. In: Libas EM, Lopez KS (eds) International consultation workshop on mungbean: proceedings of the mungbean workshop, 7–11 September 1997, New Delhi, India. Asian Vegetable Research and Development Center, Tainan, Taiwan, pp 86–91Google Scholar
  137. Somta P, Ammaranan C, Ooi PAC, Srinives P (2007) Inheritance of seed resistance to bruchids in cultivated mungbean (Vigna radiata, L. Wilczek). Euphytica 155:47–55CrossRefGoogle Scholar
  138. Somta C, Somta P, Tomooka N, Ooi PAC, Vaughan DA, Srinives P (2008a) Characterization of new sources of mungbean (Vigna radiata (L) Wilczek) resistance to bruchids, Callosobruchus spp. (Coleoptera: Bruchidae). J Stored Prod Res 44:316–321CrossRefGoogle Scholar
  139. Somta P, Musch W, Kongsamai B, Chanprame S, Nakasathien S, Toojinda T, Sorajjapinun W, Seehalak W, Tragoonrung S, Srinives P (2008b) New microsatellite markers isolated from mungbean (Vigna radiata (L.) Wilczek). Mol Ecol Resour 8:1155–1157PubMedCrossRefPubMedCentralGoogle Scholar
  140. Somta P, Seehalak W, Srinives P (2009) Development, characterization and cross-species amplification of mungbean (Vigna radiata) genic microsatellite markers. Conserv Genet 10:1939CrossRefGoogle Scholar
  141. Sorajjapinun W, Rewthongchum S, Koizumi M, Srinives P (2005) Quantitative inheritance of resistance to powdery mildew disease in mungbean (Vigna radiata (L.) Wilczek). SABRAO J Breed Gent 37:91–96Google Scholar
  142. Southgate BJ (1979) Biology of the Bruchidae. Annu Rev Entomol 24:449–473CrossRefGoogle Scholar
  143. Srinives P, Somta P, Somta C (2007) Genetics and breeding of resistance to bruchids (Callosobruchus spp.) in Vigna crops: a review. NU Int J Sci 4:1–17Google Scholar
  144. Sudha M, Anusuya P, Mahadev NG, Karthikeyan A, Nagarajan P, Raveendran M, Senthil N, Pandiyan M, Angappan K, Balasubramanian P (2013a) Molecular studies on mungbean (Vigna radiata (L.) Wilczek) and ricebean (Vigna umbellata (Thunb.)) interspecific hybridization for mungbean yellow mosaic virus resistance and development of species-specific SCAR marker for ricebean. Arch Phytopath Plant Protect, 503–517Google Scholar
  145. Sudha M, Karthikeyan A, Anusuya P, Ganesh NM, Pandiyan M, Senthil N, Raveendran M, Nagarajan P, Angappan K (2013b) Inheritance of resistance to mungbean yellow mosaic virus (MYMV) in inter and intra specific crosses of mungbean (Vigna radiata). Am J Plant Sci 4:1924–1927CrossRefGoogle Scholar
  146. Sudha M, Karthikeyan A, Shobhana VG, Nagarajan P, Raveendran M, Senthil N, Pandiyan M, Angappan K, Balasubramanian P, Rabindran R, Bharathi M (2015) Search for Vigna species conferring resistance to mungbean yellow mosaic virus in mungbean. Plant Genetic Resourc 13:162–167CrossRefGoogle Scholar
  147. Sugawara F, Ishimoto M, Le-Van N, Koshino H, Uzawa J, Yoshida S, Kitamura K (1996) Insecticidal peptide from mungbean: a resistant factor against infestation with azuki bean weevil. J Agric Food Chem 44:3360–3364CrossRefGoogle Scholar
  148. Sun L (2007) Allelism test of bruchid resistant genes and inheritance and microsatellite tagging of resistance to bruchid in a cultivar mungbean (Vigna radiata (L.) Wilczek) V2709. Master thesis, Chinese Academy of Agricultural Sciences, China, pp 1–50Google Scholar
  149. Sun L, Cheng XZ, Wang SH, Wang LX, Liu CY, Mei L, Xu N (2008) Heredity analysis and gene mapping of bruchid resistance of a mungbean cultivar V2709. Agric Sci China 7:672–677CrossRefGoogle Scholar
  150. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183CrossRefGoogle Scholar
  151. Talekar NS (1988) Biology, damage and control of bruchid pests of mungbean. In: Shanmugasundaram S, McLean BT (eds) Mungbean: proceedings of the second international symposium. AVRDC, Tainan, Taiwan, pp 329–342Google Scholar
  152. Talekar NS, Lin CP (1992) Characterization of Callosobruchus chinensis (Coleoptera: Bruchidae) resistance in mungbean. J Econ Entomol 85:1150–1153CrossRefGoogle Scholar
  153. Tang Y, Cao Y, Qiu J, Gao Z, Ou Z, Wang Y et al (2014) Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2) enhances tolerance to cadmium and copper stresses. PLoS ONE 9:e98830PubMedPubMedCentralCrossRefGoogle Scholar
  154. Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, Sommanas W, Tragoonrung S, Srinives P (2009) Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek). BMC Plant Biol 9:137PubMedPubMedCentralCrossRefGoogle Scholar
  155. Thakur RP, Patel PN, Verma JP (1977) Genetical relationships between reactions to bacterial leaf spot, yellow mosaic and Cercospora leaf spot diseases in mungbean (Vigna radiata). Euphytica 26:765–774CrossRefGoogle Scholar
  156. Tomooka N, Kashiwaba K, Vaughan DA, Ishimoto M, Egawa Y (2000) The effectiveness of evaluating wild species: searching for sources of resistance to bruchids beetles in the genus Vigna subgenus Ceratotropis. Euphytica 115:27–41CrossRefGoogle Scholar
  157. Tomooka N, Vaughan DA, Moss H, Maxted N (2002) The Asian Vigna: genus Vigna subgenus Ceratotropis genetic resources. Kluwer Academic Publishers, Dordrecht, Netherlands, 270 pagesCrossRefGoogle Scholar
  158. Tuda M, Chou LY, Niyomdham C, Buranapanichpan S (2005) Tateishi Y (2005) Ecological factors associated with pest status in Callosobruchus (Coleoptera: Bruchidae): high host specificity of non-pests to Cajaninae (Fabaceae). J Stored Prod Res 41:31–45CrossRefGoogle Scholar
  159. Várallyay É, Giczey G, Burgyán J (2012) Virus-induced gene silencing of Mlo genes induces powdery mildew resistance in Triticum aestivum. Arch Virol 157:1345–1350PubMedCrossRefPubMedCentralGoogle Scholar
  160. Vinod JD, Kandali SR (2012) Genetic analysis of resistance to mungbean yellow mosaic virus in mungbean (Vigna radiata). Plant Breed 131:414–417Google Scholar
  161. Wang X, Kaga A, Tomooka N, Vaughan DA (2004) The development of SSR markers by a new method in plants and their application to gene flow studies in azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi]. Theor Appl Genet 109:352–360PubMedCrossRefPubMedCentralGoogle Scholar
  162. Wang L, Wu C, Zhong M, Zhao D, Mei L, Chen H, Wang S, Liu C, Chen X (2016) Construction of an integrated map and location of a bruchid resistance gene in mung bean. Crop J 4:360–366CrossRefGoogle Scholar
  163. Wang Y, Jiang J, Zhao L, Zhou R, Yu W, Zhao T (2018) Application of whole genome resequencing in mapping of a tomato yellow leaf curl virus resistance gene. Sci Rep 8:9592PubMedPubMedCentralCrossRefGoogle Scholar
  164. Watanasit A, Pichitporn S (1996) Improvement of mungbean for resistance to bruchids. In: Srinives P, Kitbamroong C, Miyazaki S (eds) Mungbean germplasm: collection, evaluation and utilization for breeding program. Japan International Research Center for Agricultural Sciences, Tsukuba, Japan, pp 67–71Google Scholar
  165. Yao Y, Cheng X, Ren G (2015) A 90-day study of three bruchid-resistant mung bean cultivars in Sprague-Dawley rats. Food Chem Toxicol 76:80–85PubMedCrossRefPubMedCentralGoogle Scholar
  166. Young N, Kumar L, Menancio HD, Danesh D, Talekar NS, Shanmugasundaram S, Kim DH (1992) RFLP mapping of a major bruchid resistance gene in mungbean (Vigna radiata, L. Wilczek). Theor Appl Genet 84:839–844CrossRefGoogle Scholar
  167. Young ND, Danesh D, Menancio HD, Kumar L (1993) Mapping oligogenic resistance to powdery mildew in mungbean with RFLPs. Theor Appl Genet 87:243–249PubMedPubMedCentralCrossRefGoogle Scholar
  168. Zhang MC, Wang DM, Zheng Z, Humphry M, Liu CJ (2008) Development of PCR-based markers for a major locus conferring powdery mildew resistance in mungbean (Vigna radiata). Plant Breed 127:429–432CrossRefGoogle Scholar
  169. Zhang H, GaoZ Zheng X, Zhang Z (2012) The role of G-proteins in plant immunity. Plant Signal Behav 7:1284–1288PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zhao D, Cheng XZ, Wang LX, Wang SH, Ma YL (2010) Construction of mungbean genetic linkage map. Acta Agron Sin 36:932–939Google Scholar
  171. Zheng Z, Nonomura T, Appiano M, Pavan S, Matsuda Y, Toyoda H, Wolters AMA, Visser RGF, Bai Y (2013) Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS ONE 8:e70723PubMedPubMedCentralCrossRefGoogle Scholar
  172. Zhu K, Huesing JE, Shade RE, Bressan RA, Hasegawa PM, Murdock LL (1996) An insecticidal N-acetylglucosamine-specific lectin gene from Griffonia simplicifolia (Leguminosae). Plant Physiol 110:195–202PubMedPubMedCentralCrossRefGoogle Scholar
  173. Zou C, Wang P, Xu Y (2016) Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J 14:1941–1955PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kularb Laosatit
    • 1
  • Prakit Somta
    • 1
    Email author
  • Xin Chen
    • 2
  • Peerasak Srinives
    • 1
    • 3
  1. 1.Department of Agronomy, Faculty of Agriculture at Kamphaeng SaenKasetsart UniversityKamphaeng SaenThailand
  2. 2.Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjingChina
  3. 3.The Royal Society of ThailandDusit, BangkokThailand

Personalised recommendations