Advertisement

Alternative Mechanisms of mRNA Translation Initiation in Cellular Stress Response and Cancer

  • Rafaela Lacerda
  • Juliane Menezes
  • Marco M. Candeias
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1157)

Abstract

Throughout evolution, eukaryotic cells have devised different mechanisms to cope with stressful environments. When eukaryotic cells are exposed to stress stimuli, they activate adaptive pathways that allow them to restore cellular homeostasis. Most types of stress stimuli have been reported to induce a decrease in overall protein synthesis accompanied by induction of alternative mechanisms of mRNA translation initiation. Here, we present well-studied and recent examples of such stress responses and the alternative translation initiation mechanisms they induce, and discuss the consequences of such regulation for cell homeostasis and oncogenic transformation.

Keywords

mRNA translation Alternative translation initiation Cellular stress Cancer IRES Non-AUG 

Notes

Acknowledgments

Marco M Candeias was partially supported by grants PTDC/MED-ONC/32048/2017 and PTDC/BIMONC/4890/2014 from Fundação para a Ciência e a Tecnologia (FCT), by Grants-in-Aid 16K21111 and 18K07229 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, by Takeda Foundation and Astellas Foundation. Juliane Menezes is a posdoc fellow (SFRH/BPD/98360/2013) from FCT.

References

  1. 1.
    Erickson FL, Hannig EM (1996) Ligand interactions with eukaryotic translation initiation factor 2: role of the gamma-subunit. EMBO J 15:6311–6320PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Gomez E, Mohammad SS, Pavitt GD (2002) Characterization of the minimal catalytic domain within eIF2B: the guanine-nucleotide exchange factor for translation initiation. EMBO J 21:5292–5301.  https://doi.org/10.1093/emboj/cdf515 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pestova TV, Borukhov SI, Hellen CUT (1998) Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394:854–859.  https://doi.org/10.1038/29703 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Valásek L, Nielsen KH, Hinnebusch AG (2002) Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo. EMBO J 21:5886–5898PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Olsen DS, Savner EM, Mathew A et al (2003) Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo. EMBO J 22:193–204.  https://doi.org/10.1093/emboj/cdg030 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Majumdar R (2003) Mammalian translation initiation factor eIF1 functions with eIF1A and eIF3 in the formation of a stable 40 S preinitiation complex. J Biol Chem 278:6580–6587.  https://doi.org/10.1074/jbc.M210357200 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kolupaeva VG (2005) Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. RNA 11:470–486.  https://doi.org/10.1261/rna.7215305 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pestova TV, Lorsch JR, Hellen CUT (2007) The mechanisms of translation initiation in eukaryotes. In: Mathews M, Sonenberg N, Hershey JWB (eds) Translational control in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  9. 9.
    Lacerda R, Menezes J, Romão L (2017) More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell Mol Life Sci 74:1659–1680.  https://doi.org/10.1007/s00018-016-2428-2 CrossRefGoogle Scholar
  10. 10.
    Feoktistova K, Tuvshintogs E, Do A, Fraser CS (2013) Human eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity. Proc Natl Acad Sci 110:13339–13344.  https://doi.org/10.1073/pnas.1303781110 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Villa N, Do A, Hershey JWB, Fraser CS (2013) Human eukaryotic initiation factor 4G (eIF4G) protein binds to eIF3c, -d, and -e to promote mRNA recruitment to the ribosome. J Biol Chem 288:32932–32940.  https://doi.org/10.1074/jbc.M113.517011 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kozak M (1989) The scanning model for translation: an update. J Cell Biol 108:229–241PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Kozak M (2002) Pushing the limits of the scanning mechanism for initiation of translation. Gene 299:1–34PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kozak M (1995) Adherence to the first-AUG rule when a second AUG codon follows closely upon the first. Proc Natl Acad Sci U S A 92:2662–2666PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Dikstein R (2012) Transcription and translation in a package deal: the TISU paradigm. Gene 491:1–4.  https://doi.org/10.1016/j.gene.2011.09.013 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yueh A, Schneider RJ (1996) Selective translation initiation by ribosome jumping in adenovirus-infected and heat-shocked cells. Genes Dev 10:1557–1567PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Pestova TV, Kolupaeva VG (2002) The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev 16:2906–2922.  https://doi.org/10.1101/gad.1020902 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kapp LD, Lorsch JR (2004) The molecular mechanics of eukaryotic translation. Annu Rev Biochem 73:657–704.  https://doi.org/10.1146/annurev.biochem.73.030403.080419 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    De La Cruz J, Iost I, Kressler D, Linder P (1997) The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc Natl Acad Sci 94:5201–5206PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Hinnebusch AG (2011) Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol Mol Biol Rev 75:434–467.  https://doi.org/10.1128/MMBR.00008-11 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kuhle B, Ficner R (2014) eIF5B employs a novel domain release mechanism to catalyze ribosomal subunit joining. EMBO J 33:1177–1191.  https://doi.org/10.1002/embj.201387344 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lee JH, Pestova TV, Shin B-S et al (2002) Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation. Proc Natl Acad Sci U S A 99:16689–16694.  https://doi.org/10.1073/pnas.262569399 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Shin B-S, Maag D, Roll-Mecak A et al (2002) Uncoupling of initiation factor eIF5B/IF2 GTPase and translational activities by mutations that lower ribosome affinity. Cell 111:1015–1025PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127.  https://doi.org/10.1038/nrm2838 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ron D (2002) Translational control in the endoplasmic reticulum stress response. J Clin Invest 110:1383–1388.  https://doi.org/10.1172/JCI200216784 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Pakos-Zebrucka K, Koryga I, Mnich K et al (2016) The integrated stress response. EMBO Rep 17:1374–1395.  https://doi.org/10.15252/embr.201642195 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Holcik M (2015) Could the eIF2α-independent translation be the Achilles heel of cancer? Front Oncol 5:264.  https://doi.org/10.3389/fonc.2015.00264
  28. 28.
    Rzymski T, Milani M, Pike L et al (2010) Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 29:4424–4435.  https://doi.org/10.1038/onc.2010.191 PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Roussou I, Thireos G, Hauge BM (1988) Transcriptional-translational regulatory circuit in Saccharomyces cerevisiae which involves the GCN4 transcriptional activator and the GCN2 protein kinase. Mol Cell Biol 8:2132–2139PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lu L, Han A-P, Chen J-J (2001) Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses. Mol Cell Biol 21:7971–7980.  https://doi.org/10.1128/MCB.21.23.7971-7980.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Taylor DR, Lee SB, Romano PR et al (1996) Autophosphorylation sites participate in the activation of the double-stranded-RNA-activated protein kinase PKR. Mol Cell Biol 16:6295–6302PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274.  https://doi.org/10.1038/16729 PubMedCrossRefGoogle Scholar
  33. 33.
    Wu S, Hu Y, Wang J-L et al (2002) Ultraviolet light inhibits translation through activation of the unfolded protein response kinase PERK in the lumen of the endoplasmic reticulum. J Biol Chem 277:18077–18083.  https://doi.org/10.1074/jbc.M110164200 PubMedCrossRefGoogle Scholar
  34. 34.
    Yerlikaya A, Kimball SR, Stanley BA (2008) Phosphorylation of eIF2alpha in response to 26S proteasome inhibition is mediated by the haem-regulated inhibitor (HRI) kinase. Biochem J 412:579–588.  https://doi.org/10.1042/BJ20080324 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Denoyelle C, Abou-Rjaily G, Bezrookove V et al (2006) Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol 8:1053–1063.  https://doi.org/10.1038/ncb1471 PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Liu B, Qian S-B (2014) Translational reprogramming in stress response. Wiley Interdiscip Rev RNA 5:301–305.  https://doi.org/10.1002/wrna.1212 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lu PD, Harding HP, Ron D (2004) Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol 167:27PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Nair S, Xu C, Shen G et al (2007) Toxicogenomics of endoplasmic reticulum stress inducer tunicamycin in the small intestine and liver of Nrf2 knockout and C57BL/6J mice. Toxicol Lett 168:21–39.  https://doi.org/10.1016/j.toxlet.2006.10.012 CrossRefPubMedGoogle Scholar
  39. 39.
    Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta, Mol Cell Res 1833:3460–3470.  https://doi.org/10.1016/J.BBAMCR.2013.06.028 CrossRefPubMedGoogle Scholar
  40. 40.
    Bravo R, Parra V, Gatica D et al (2013) Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int Rev Cell Mol Biol 301:215–290.  https://doi.org/10.1016/B978-0-12-407704-1.00005-1 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bertolotti A, Zhang Y, Hendershot LM et al (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332.  https://doi.org/10.1038/35014014 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Okamura K, Kimata Y, Higashio H et al (2000) Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast. Biochem Biophys Res Commun 279:445–450.  https://doi.org/10.1006/bbrc.2000.3987 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wu J, He G-T, Zhang W-J et al (2016) IRE1α signaling pathways involved in mammalian cell fate determination. Cell Physiol Biochem 38:847–858.  https://doi.org/10.1159/000443039 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Guan B-J, Krokowski D, Majumder M et al (2014) Translational control during endoplasmic reticulum stress beyond phosphorylation of the translation initiation factor eIF2α. J Biol Chem 289:12593–12611.  https://doi.org/10.1074/jbc.M113.543215 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Harding HP, Novoa I, Zhang Y et al (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108.  https://doi.org/10.1016/S1097-2765(00)00108-8 PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Chan CP, Kok KH, Tang HMV et al (2013) Internal ribosome entry site-mediated translational regulation of ATF4 splice variant in mammalian unfolded protein response. Biochim Biophys Acta, Mol Cell Res 1833:2165–2175.  https://doi.org/10.1016/j.bbamcr.2013.05.002 PubMedCrossRefGoogle Scholar
  47. 47.
    Warnakulasuriyarachchi D, Cerquozzi S, Cheung HH, Holcík M (2004) Translational induction of the inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is mediated via an inducible internal ribosome entry site element∗.  https://doi.org/10.1074/jbc.M308737200 PubMedCrossRefGoogle Scholar
  48. 48.
    Lewis SM, Cerquozzi S, Graber TE et al (2007) The eIF4G homolog DAP5/p97 supports the translation of select mRNAs during endoplasmic reticulum stress. Nucleic Acids Res 36:168–178.  https://doi.org/10.1093/nar/gkm1007 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Yoffe Y, David M, Kalaora R et al (2016) Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells. Genes Dev 30:1991–2004.  https://doi.org/10.1101/gad.285239.116 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Henis-Korenblit S, Shani G, Sines T et al (2002) The caspase-cleaved DAP5 protein supports internal ribosome entry site-mediated translation of death proteins. Proc Natl Acad Sci USA 99:5400–5405.  https://doi.org/10.1073/pnas.082102499 PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Sridharan S, Varghese R, Venkatraj V, Datta A (2017) Hypoxia stress response pathways: modeling and targeted therapy. IEEE J Biomed Health Inform 21:875–885.  https://doi.org/10.1109/JBHI.2016.2559460 PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Young RM, Wang S-J, Gordan JD et al (2008) Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independent mechanism. J Biol Chem 283:16309–16319.  https://doi.org/10.1074/jbc.M710079200 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Shi D-Y, Xie F-Z, Zhai C, et al (2009) The role of cellular oxidative stress in regulating glycolysis energy metabolism in hepatoma cells.  https://doi.org/10.1186/1476-4598-8-32 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wheaton WW, Chandel NS (2011) Hypoxia. 2. Hypoxia regulates cellular metabolism. Am J Physiol Cell Physiol 300:C385–C393.  https://doi.org/10.1152/ajpcell.00485.2010 PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Ismail R, Ul Hussain M (2017) The up regulation of phosphofructokinase1 (PFK1) protein during chemically induced hypoxia is mediated by the hypoxia-responsive internal ribosome entry site (IRES) element, present in its 5′ untranslated region. Biochimie 139:38–45.  https://doi.org/10.1016/J.BIOCHI.2017.05.012 PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Zhou J, Wan J, Shu XE et al (2018) N6-Methyladenosine guides mRNA alternative translation during integrated stress response. Mol Cell 69:636–647.e7.  https://doi.org/10.1016/j.molcel.2018.01.019 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Jackson RJ (1991) mRNA translation. Initiation without an end. Nature 353:14–15.  https://doi.org/10.1038/353014a0 PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Thakor N, Holcik M (2012) IRES-mediated translation of cellular messenger RNA operates in eIF2 – independent manner during stress. Nucleic Acids Res 40:541–552.  https://doi.org/10.1093/nar/gkr701 PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Soengas MS, Capodieci P, Polsky D et al (2001) Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409:207–211.  https://doi.org/10.1038/35051606 PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Andreev DE, Dmitriev SE, Terenin IM, Shatsky IN (2013) Cap-independent translation initiation of Apaf-1 mRNA based on a scanning mechanism is determined by some features of the secondary structure of its 5′ untranslated region. Biochemistry 78:157–165.  https://doi.org/10.1134/S0006297913020041 PubMedPubMedCentralGoogle Scholar
  61. 61.
    Coldwell MJ, Mitchell SA, Stoneley M et al (2000) Initiation of Apaf-1 translation by internal ribosome entry. Oncogene 19:899–905.  https://doi.org/10.1038/sj.onc.1203407 PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Terenin IM, Andreev DE, Dmitriev SE, Shatsky IN (2013) A novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent. Nucleic Acids Res 41:1807–1816.  https://doi.org/10.1093/nar/gks1282 PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Badura M, Braunstein S, Zavadil J, Schneider RJ (2012) DNA damage and eIF4G1 in breast cancer cells reprogram translation for survival and DNA repair mRNAs. Proc Natl Acad Sci USA 109:18767–18772.  https://doi.org/10.1073/pnas.1203853109 PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Stetter KO (2006) Hyperthermophiles in the history of life. Philos Trans R Soc B Biol Sci 361:1837–1843.  https://doi.org/10.1098/rstb.2006.1907 CrossRefGoogle Scholar
  65. 65.
    Richter K, Haslbeck M, Buchner J (2010) Molecular cell review the heat shock response: life on the verge of death.  https://doi.org/10.1016/j.molcel.2010.10.006 PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Mosser DD, Morimoto RI (2004) Molecular chaperones and the stress of oncogenesis. Oncogene 23:2907–2918.  https://doi.org/10.1038/sj.onc.1207529 PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Meyer KD, Patil DP, Zhou J et al (2015) 5′ UTR m(6)a promotes cap-independent translation. Cell 163:999–1010.  https://doi.org/10.1016/j.cell.2015.10.012 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Coots RA, Liu X-M, Mao Y et al (2017) M 6 a facilitates eIF4F-independent mRNA translation. Mol Cell 68:504–514.e7.  https://doi.org/10.1016/j.molcel.2017.10.002 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Merrick WC, Pavitt GD (2018) Protein synthesis initiation in eukaryotic cells. Cold Spring Harb Perspect Biol 10:a033092.  https://doi.org/10.1101/cshperspect.a033092 PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Wek RC (2018) Role of eIF2α kinases in translational control and adaptation to cellular stress. Cold Spring Harb Perspect Biol 10:a032870.  https://doi.org/10.1101/cshperspect.a032870 PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Sun J, Conn CS, Han Y et al (2011) PI3K-mTORC1 attenuates stress response by inhibiting cap-independent Hsp70 translation. J Biol Chem 286:6791–6800.  https://doi.org/10.1074/jbc.M110.172882 PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Kim YK, Jang SK (2002) Continuous heat shock enhances translational initiation directed by internal ribosomal entry site. Biochem Biophys Res Commun 297:224–231.  https://doi.org/10.1016/S0006-291X(02)02154-X PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Zhang X, Gao X, Coots RA et al (2015) Translational control of the cytosolic stress response by mitochondrial ribosomal protein L18. Nat Struct Mol Biol 22:404–410.  https://doi.org/10.1038/nsmb.3010 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Li W, Thakor N, Xu EY et al (2010) An internal ribosomal entry site mediates redox-sensitive translation of Nrf2. Nucleic Acids Res 38:778–788.  https://doi.org/10.1093/nar/gkp1048 PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Shay KP, Michels AJ, Li W et al (2012) Cap-independent Nrf2 translation is part of a lipoic acid-stimulated detoxification stress response. Biochim Biophys Acta 1823:1102–1109.  https://doi.org/10.1016/j.bbamcr.2012.04.002 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Zhang J, Dinh TN, Kappeler K et al (2012) La autoantigen mediates oxidant induced de novo Nrf2 protein translation. Mol Cell Proteomics 11:M111.015032-M111.015032.  https://doi.org/10.1074/mcp.M111.015032 CrossRefGoogle Scholar
  77. 77.
    Wang X, Zhao Y, Xiao Z et al (2009) Alternative translation of OCT4 by an internal ribosome entry site and its novel function in stress response. Stem Cells 27:1265–1275.  https://doi.org/10.1002/stem.58 PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Xiao Z-S, Simpson LG, Quarles LD (2003) IRES-dependent translational control of Cbfa1/Runx2 expression. J Cell Biochem 88:493–505.  https://doi.org/10.1002/jcb.10375 PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Starck SR, Tsai JC, Chen K et al (2016) Translation from the 5′ untranslated region shapes the integrated stress response. Science 351:aad3867.  https://doi.org/10.1126/science.aad3867 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Spriggs KA, Stoneley M, Bushell M, Willis AE (2008) Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol Cell 100:27–38.  https://doi.org/10.1042/BC20070098 PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Weingarten-Gabbay S, Elias-Kirma S, Nir R, et al (2016) Comparative genetics: systematic discovery of cap-independent translation sequences in human and viral genomes. Science (80–):351.  https://doi.org/10.1126/science.aad4939 PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Candeias MM, Powell DJ, Roubalova E et al (2006) Expression of p53 and p53/47 are controlled by alternative mechanisms of messenger RNA translation initiation. Oncogene 25:6936–6947.  https://doi.org/10.1038/sj.onc.1209996 PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Colussi TM, Costantino DA, Zhu J et al (2015) Initiation of translation in bacteria by a structured eukaryotic IRES RNA. Nature 519:110–113.  https://doi.org/10.1038/nature14219 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Nakayama K (2009) Cellular signal transduction of the hypoxia response. J Biochem 146:757–765.  https://doi.org/10.1093/jb/mvp167 PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Brocato J, Chervona Y, Costa M (2014) Molecular responses to hypoxia-inducible factor 1 and beyond. Mol Pharmacol 85:651–657.  https://doi.org/10.1124/mol.113.089623 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Kress TR, Sabò A, Amati B (2015) MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer 15:593–607.  https://doi.org/10.1038/nrc3984 PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389.  https://doi.org/10.1016/j.apsb.2015.05.007 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Rohban S, Campaner S (2015) Myc induced replicative stress response: how to cope with it and exploit it. Biochim Biophys Acta 1849:517–524.  https://doi.org/10.1016/j.bbagrm.2014.04.008 PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Grover R, Candeias MM, Fahraeus R, Das S (2009) p53 and little brother p53/47: linking IRES activities with protein functions. Oncogene 28:2766–2772.  https://doi.org/10.1038/onc.2009.138 PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Peer E, Moshitch-Moshkovitz S, Rechavi G, Dominissini D (2018) The epitranscriptome in translation regulation. Cold Spring Harb Perspect Biol:a032623.  https://doi.org/10.1101/cshperspect.a032623
  91. 91.
    Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206.  https://doi.org/10.1038/nature11112 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Meyer KD, Saletore Y, Zumbo P et al (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–1646.  https://doi.org/10.1016/j.cell.2012.05.003 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Meyer KD, Patil DP, Zhou J et al (2015) 5′ UTR m6A promotes cap-independent translation. Cell 163:999–1010.  https://doi.org/10.1016/j.cell.2015.10.012 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Zhou J, Wan J, Gao X et al (2015) Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526:591–594.  https://doi.org/10.1038/nature15377 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Kearse MG, Wilusz JE (2017) Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes Dev 31:1717–1731.  https://doi.org/10.1101/gad.305250.117 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Takahashi K, Maruyama M, Tokuzawa Y et al (2005) Evolutionarily conserved non-AUG translation initiation in NAT1/p97/DAP5 (EIF4G2). Genomics 85:360–371.  https://doi.org/10.1016/j.ygeno.2004.11.012 PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Liberman N, Gandin V, Svitkin YV et al (2015) DAP5 associates with eIF2β and eIF4AI to promote Internal Ribosome Entry Site driven translation. Nucleic Acids Res 43:3764–3775.  https://doi.org/10.1093/nar/gkv205 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Diederichs S, Bartsch L, Berkmann JC et al (2016) The dark matter of the cancer genome: aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations. EMBO Mol Med 8:442–457.  https://doi.org/10.15252/emmm.201506055 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318–327.  https://doi.org/10.1038/nrm1618 PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Blais JD, Addison CL, Edge R et al (2006) Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 26:9517–9532.  https://doi.org/10.1128/MCB.01145-06 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Gaccioli F, Huang CC, Wang C et al (2006) Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation. J Biol Chem 281:17929–17940.  https://doi.org/10.1074/jbc.M600341200 PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Braunstein S, Karpisheva K, Pola C et al (2007) A hypoxia-controlled cap-dependent to cap-independent translation switch in breast Cancer. Mol Cell 28:501–512.  https://doi.org/10.1016/j.molcel.2007.10.019 PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Topisirovic I, Sonenberg N (2011) mRNA translation and energy metabolism in cancer: the role of the MAPK and mTORC1 pathways. Cold Spring Harb Symp 76:355–368CrossRefGoogle Scholar
  104. 104.
    Sendoel A, Dunn JG, Rodriguez EH et al (2017) Translation from unconventional 5′ start sites drives tumour initiation. Nature 541:494–499.  https://doi.org/10.1038/nature21036 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Starck SR, Jiang V, Pavon-Eternod M et al (2012) Leucine-tRNA initiates at CUG start codons for protein synthesis and presentation by MHC class I. Science (80- ) 336:1719–1723.  https://doi.org/10.1126/science.1220270 CrossRefGoogle Scholar
  106. 106.
    Liang H, He S, Yang J et al (2014) PTENα, a PTEN isoform translated through alternative initiation, regulates mitochondrial function and energy metabolism. Cell Metab 19:836–848.  https://doi.org/10.1016/j.cmet.2014.03.023 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Guenther U-P, Weinberg DE, Zubradt MM et al (2018) The helicase Ded1p controls use of near-cognate translation initiation codons in 5′ UTRs. Nature 559:130–134.  https://doi.org/10.1038/s41586-018-0258-0 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Liang H, Chen X, Yin Q et al (2017) PTENβ is an alternatively translated isoform of PTEN that regulates rDNA transcription. Nat Commun 8:14771.  https://doi.org/10.1038/ncomms14771 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Bugler B, Amalric F, Prats H (1991) Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol Cell Biol 11:573–577PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Arnaud E, Touriol C, Boutonnet C et al (1999) A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol Cell Biol 19:505–514PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Hann SR, King MW, Bentley DL et al (1988) A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt’s lymphomas. Cell 52:185–195PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Hann SR, Sloan-Brown K, Spotts GD (1992) Translational activation of the non-AUG-initiated c-myc 1 protein at high cell densities due to methionine deprivation. Genes Dev 6:1229–1240PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Sonenberg N, Hinnebusch AG (2007) New modes of translational control in development, behavior, and disease. Mol Cell 28:721–729.  https://doi.org/10.1016/j.molcel.2007.11.018 PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Silvera D, Schneider RJ (2009) Inflammatory breast cancer cells are constitutively adapted to hypoxia. Cell Cycle 8:3091PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Lien I-C, Horng L-Y, Hsu P-L et al (2014) Internal ribosome entry site of bFGF is the target of thalidomide for IMiDs development in multiple myeloma. Genes Cancer 5:127PubMedPubMedCentralGoogle Scholar
  116. 116.
    Vagner S, Gensac MC, Maret A et al (1995) Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. Mol Cell Biol 15:35–44PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Martineau Y, Le Bec C, Monbrun L et al (2004) Internal ribosome entry site structural motifs conserved among mammalian fibroblast growth factor 1 alternatively spliced mRNAs. Mol Cell Biol 24:7622–7635.  https://doi.org/10.1128/MCB.24.17.7622-7635.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Shi Y, Yang Y, Hoang B et al (2016) Therapeutic potential of targeting IRES-dependent c-myc translation in multiple myeloma cells during ER stress. Oncogene 35:1015–1024.  https://doi.org/10.1038/onc.2015.156 PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Yeh SH, Yang WB, Gean PW et al (2011) Translational and transcriptional control of Sp1 against ischaemia through a hydrogen peroxide-activated internal ribosomal entry site pathway. Nucleic Acids Res 39:5412–5423.  https://doi.org/10.1093/nar/gkr161 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Fernandez J, Yaman I, Mishra R et al (2001) Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. J Biol Chem 276:12285–12291.  https://doi.org/10.1074/jbc.M009714200 PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Fernandez J, Bode B, Koromilas A et al (2002) Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner. J Biol Chem 277:11780–11787.  https://doi.org/10.1074/jbc.M110778200 PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Damiano F, Alemanno S, Gnoni GV, Siculella L (2010) Translational control of the sterol-regulatory transcription factor SREBP-1 mRNA in response to serum starvation or ER stress is mediated by an internal ribosome entry site. Biochem J 429:603–612PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Riley A, Jordan LE, Holcik M (2010) Distinct 5′ UTRs regulate XIAP expression under normal growth conditions and during cellular stress. Nucleic Acids Res 38:4665–4674.  https://doi.org/10.1093/nar/gkq241 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Liu T, Zhang H, Xiong J et al (2015) Inhibition of MDM2 homodimerization by XIAP IRES stabilizes MDM2, influencing cancer cell survival. Mol Cancer 14.  https://doi.org/10.1186/s12943-015-0334-0
  125. 125.
    Holcik M, Lefebvre C, Yeh C et al (1999) A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection. Nat Cell Biol 1:190–192.  https://doi.org/10.1038/11109 PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Holcik M, Sonenberg N, Korneluk RG (2000) Internal ribosome initiation of translation and the control of cell death. Trends Genet 16:469–473PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Fu Q, Chen Z, Gong X et al (2015) β-Catenin expression is regulated by an IRES-dependent mechanism and stimulated by paclitaxel in human ovarian cancer cells. Biochem Biophys Res Commun 461:21–27.  https://doi.org/10.1016/j.bbrc.2015.03.161 PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Yang X, Hao Y, Ferenczy A et al (1999) Overexpression of anti-apoptotic gene BAG-1 in human cervical cancer. Exp Cell Res 247:200–207.  https://doi.org/10.1006/excr.1998.4349 PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Subkhankulova T, Mitchell SA, Willis AE (2001) Internal ribosome entry segment-mediated initiation of c-Myc protein synthesis following genotoxic stress. Biochem J 359:183PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Dobbyn HC, Hill K, Hamilton TL et al (2007) Regulation of BAG-1 IRES-mediated translation following chemotoxic stress. Oncogene 27:1167–1174PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Ott G, Rosenwald A, Campo E (2013) Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood 122:3884–3891.  https://doi.org/10.1182/blood-2013-05-498329 PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Sherrill KW, Byrd MP, Van Eden ME, Lloyd RE (2004) BCL-2 translation is mediated via internal ribosome entry during cell stress. J Biol Chem 279:29066–29074.  https://doi.org/10.1074/jbc.M402727200 PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Van Eden ME (2004) Demonstrating internal ribosome entry sites in eukaryotic mRNAs using stringent RNA test procedures. RNA 10:720–730.  https://doi.org/10.1261/rna.5225204 PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Candeias MM, Hagiwara M, Matsuda M (2016) Cancer-specific mutations in p53 induce the translation of Delta160p53 promoting tumorigenesis. EMBO Rep 17:1542–1551.  https://doi.org/10.15252/embr.201541956 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Ray PS, Grover R, Das S (2006) Two internal ribosome entry sites mediate the translation of p53 isoforms. EMBO Rep 7:404–410. https://doi.org/7400623 [pii]  https://doi.org/10.1038/sj.embor.7400623
  136. 136.
    Khan D, Katoch A, Das A et al (2015) Reversible induction of translational isoforms of p53 in glucose deprivation. Cell Death Differ 22:1203–1218.  https://doi.org/10.1038/cdd.2014.220 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Grover R, Candeias MM, Fåhraeus R, Das S (2009) p53 and little brother p53/47: linking IRES activities with protein functions. Oncogene 28:2766–2772.  https://doi.org/10.1038/onc.2009.138 PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Candeias MM (2011) The can and can’t dos of p53 RNA. Biochimie 93:1962–1965.  https://doi.org/10.1016/j.biochi.2011.06.010 PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Grover R, Ray PS, Das S (2008) Polypyrimidine tract binding protein regulates IRES-mediated translation of p53 isoforms. Cell Cycle 7:2189–2198. https://doi.org/6271 [pii]
  140. 140.
    Sharathchandra A, Lal R, Khan D, Das S (2012) Annexin A2 and PSF proteins interact with p53 IRES and regulate translation of p53 mRNA. RNA Biol 9:1429–1439.  https://doi.org/10.4161/rna.22707 PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Weingarten-Gabbay S, Khan D, Liberman N et al (2014) The translation initiation factor DAP5 promotes IRES-driven translation of p53 mRNA. Oncogene 33:611–618.  https://doi.org/10.1038/onc.2012.626 PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Halaby M-J, Harris BRE, Miskimins WK, et al (2015) Deregulation of IRES-mediated p53 translation in cancer cells with defective p53 response to DNA damage. Mol Cell Biol MCB.00365-15.  https://doi.org/10.1128/MCB.00365-15 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Halaby M-J, Li Y, Harris BR, et al. Translational control protein 80 stimulates IRES-mediated translation of p53 mRNA in response to DNA damage.  https://doi.org/10.1155/2015/708158 CrossRefGoogle Scholar
  144. 144.
    Serrano M, Lin AW, McCurrach ME et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602CrossRefGoogle Scholar
  145. 145.
    Bellodi C, Kopmar N, Ruggero D (2010) Deregulation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita. EMBO J 29:1865–1876. https://doi.org/emboj201083 [pii] https://doi.org/10.1038/emboj.2010.83
  146. 146.
    Leprivier G, Rotblat B, Khan D et al (2015) Stress-mediated translational control in cancer cells. Biochim Biophys Acta Gene Regul Mech 1849:845–860.  https://doi.org/10.1016/j.bbagrm.2014.11.002 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rafaela Lacerda
    • 1
    • 2
  • Juliane Menezes
    • 1
    • 2
  • Marco M. Candeias
    • 1
    • 3
  1. 1.Department of Human GeneticsNational Institute of Health Doutor Ricardo JorgeLisboaPortugal
  2. 2.Faculty of Sciences, BioISI – Biosystems & Integrative Sciences InstituteUniversity of LisbonLisboaPortugal
  3. 3.MaRCU – Molecular and RNA Cancer Unit, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations