Advertisement

Skin Tissue Engineering in Severe Burns: A Review on Its Therapeutic Applications

  • Alvin Wen Choong Chua
  • Chairani Fitri Saphira
  • Si Jack Chong
Chapter

Abstract

Current advances in basic stem cell research and tissue engineering augur well for the development of improved cultured skin tissue substitutes. Although the ability to grow autologous keratinocytes in vitro from a small skin biopsy into sheets of stratified epithelium (within 3–4 weeks) helped alleviate the problem of insufficient donor site for extensive burn, many burn units still have to grapple with insufficient skin allografts which are used as intermediate wound coverage after burn excision. Alternatives offered by tissue-engineered skin dermal replacements to meet emergency demand have been used fairly successfully. Despite the availability of these commercial products, they all suffer from the same problems of extremely high cost, subnormal skin microstructure, and inconsistent engraftment, especially in full-thickness burns. This review seeks to bring the reader through the beginnings of skin tissue engineering, the utilization of some of the key products developed for the treatment of severe burns, and the hope of harnessing stem cells to improve on current practice.

References

  1. 1.
    Sontheimer RD. Skin is not the largest organ. J Invest Dermatol. 2014;134(2):581–2.PubMedCrossRefGoogle Scholar
  2. 2.
    Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials. Clin Dermatol. 2005;23(4):403–12.PubMedCrossRefGoogle Scholar
  3. 3.
    Breitkreutz D, Mirancea N, Nischt R. Basement membranes in skin: unique matrix structures with diverse functions? Histochem Cell Biol. 2009;132(1):1–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Breitkreutz D, Koxholt I, Thiemann K, Nischt R. Skin basement membrane: the foundation of epidermal integrity–BM functions and diverse roles of bridging molecules nidogen and perlecan. Biomed Res Int. 2013;2013:179784.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Nerem RM. Tissue engineering in the USA. Med Biol Eng Comput. 1992;30(4):CE8–12.PubMedCrossRefGoogle Scholar
  6. 6.
    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6(3):331–43.CrossRefGoogle Scholar
  8. 8.
    Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A. 1979;76(11):5665–8.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Yannas IV, Burke JF, Huang C, Gordon PL. Correlation of in vivo collagen degradation rate with in vitro measurements. J Biomed Mater Res. 1975;9(6):623–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Yannas IV, Burke JF. Design of an artificial skin. I. Basic design principles. J Biomed Mater Res. 1980;14(1):65–81.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    O’Conner NE, Mulliken JB, Banks-Schlegel S, Kehinde O, Green H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet. 1981;1(8211):75–8.CrossRefGoogle Scholar
  12. 12.
    Green H. The birth of therapy with cultured cells. BioEssays. 2008;30(9):897–903.CrossRefGoogle Scholar
  13. 13.
    Gallico GG 3rd, O’Connor NE, Compton CC, Kehinde O, Green H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med. 1984;311(7):448–51.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Burke JF, Yannas IV, Quinby WC Jr, Bondoc CC, Jung WK. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg. 1981;194(4):413–28.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Heimbach D, Luterman A, Burke J, Cram A, Herndon D, Hunt J, Jordan M, McManus W, Solem L, Warden G, et al. Artificial dermis for major burns. A multi-center randomized clinical trial. Ann Surg. 1988;208(3):313–20.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Heimbach DM, Warden GD, Luterman A, Jordan MH, Ozobia N, Ryan CM, Voigt DW, Hickerson WL, Saffle JR, DeClement FA, Sheridan RL, Dimick AR. Multicenter postapproval clinical trial of Integra dermal regeneration template for burn treatment. J Burn Care Rehabil. 2003;24(1):42–8.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Heitland A, Piatkowski A, Noah EM, Pallua N. Update on the use of collagen/glycosaminoglycate skin substitute-six years of experiences with artificial skin in 15 German burn centers. Burns. 2004;30(5):471–5.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7(43):229–58.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Eldad A, Burt A, Clarke JA, Gusterson B. Cultured epithelium as a skin substitute. Burns Incl Therm Inj. 1987;13(3):173–80.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    De Luca M, Albanese E, Bondanza S, Megna M, Ugozzoli L, Molina F, Cancedda R, Santi PL, Bormioli M, Stella M, et al. Multicentre experience in the treatment of burns with autologous and allogenic cultured epithelium, fresh or preserved in a frozen state. Burns. 1989;15(5):303–9.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Herzog SR, Meyer A, Woodley D, Peterson HD. Wound coverage with cultured autologous keratinocytes: use after burn wound excision, including biopsy follow-up. J Trauma. 1988;28(2):195–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Munster AM. Whither [corrected] skin replacement? Burns. 1997;23(1):v.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Cuono C, Langdon R, McGuire J. Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet. 1986;1(8490):1123–4.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Cuono CB, Langdon R, Birchall N, Barttelbort S, McGuire J. Composite autologous-allogeneic skin replacement: development and clinical application. Plast Reconstr Surg. 1987;80(4):626–37.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Nave M. Wound bed preparation: approaches to replacement of dermis. J Burn Care Rehabil. 1992;13(1):147–53.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Compton CC, Hickerson W, Nadire K, Press W. Acceleration of skin regeneration from cultured epithelial autografts by transplantation to homograft dermis. J Burn Care Rehabil. 1993;14(6):653–62.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Hickerson WL, Compton C, Fletchall S, Smith LR. Cultured epidermal autografts and allodermis combination for permanent burn wound coverage. Burns. 1994;20(Suppl 1):S52–5. discussion S5–6PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Sood R, Roggy D, Zieger M, Balledux J, Chaudhari S, Koumanis DJ, Mir HS, Cohen A, Knipe C, Gabehart K, Coleman JJ. Cultured epithelial autografts for coverage of large burn wounds in eighty-eight patients: the Indiana University experience. J Burn Care Res. 2010;31(4):559–68.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Nivatvongs S, Dhitavat V, Jungsangasom A, Attajarusit Y, Sroyson S, Prabjabok S, Pinmongkol C. Thirteen years of the Thai red cross organ donation centre. Transplant Proc. 2008;40(7):2091–4.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Oniscu GC, Forsythe JL. An overview of transplantation in culturally diverse regions. Ann Acad Med Singap. 2009;38(4):365.PubMedGoogle Scholar
  31. 31.
    Orgill DP, Butler C, Regan JF, Barlow MS, Yannas IV, Compton CC. Vascularized collagen-glycosaminoglycan matrix provides a dermal substrate and improves take of cultured epithelial autografts. Plast Reconstr Surg. 1998;102(2):423–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Hansbrough JF, Franco ES. Skin replacements. Clin Plast Surg. 1998;25(3):407–23.Google Scholar
  33. 33.
    Siwy BK, Compton CC. Cultured epidermis: Indiana University Medical Center’s experience. J Burn Care Rehabil. 1992;13(1):130–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A. 1987;84(8):2302–6.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Pellegrini G, Ranno R, Stracuzzi G, Bondanza S, Guerra L, Zambruno G, Micali G, De Luca M. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation. 1999;68(6):868–79.CrossRefGoogle Scholar
  36. 36.
    Ronfard V, Rives JM, Neveux Y, Carsin H, Barrandon Y. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation. 2000;70(11):1588–98.CrossRefGoogle Scholar
  37. 37.
    Pellegrini G, Bondanza S, Guerra L, De Luca M. Cultivation of human keratinocyte stem cells: current and future clinical applications. Med Biol Eng Comput. 1998;36(6):778–90.PubMedCrossRefGoogle Scholar
  38. 38.
    Chua AW, Ma DR, Song IC, Phan TT, Lee ST, Song C. In vitro evaluation of fibrin mat and Tegaderm wound dressing for the delivery of keratinocytes—implications of their use to treat burns. Burns. 2008;34(2):175–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Atiyeh BS, Costagliola M. Cultured epithelial autograft (CEA) in burn treatment: three decades later. Burns. 2007;33(4):405–13.PubMedCrossRefGoogle Scholar
  40. 40.
    De Luca M, Bondanza S, Cancedda R, Tamisani AM, Di Noto C, Muller L, Dioguardi D, Brienza E, Calvario A, Zermani R, et al. Permanent coverage of full skin thickness burns with autologous cultured epidermis and re-epithelialization of partial skin thickness lesions induced by allogeneic cultured epidermis: a multicentre study in the treatment of children. Burns. 1992;18(Suppl 1):S16–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Clark RA, Ghosh K, Tonnesen MG. Tissue engineering for cutaneous wounds. J Invest Dermatol. 2007;127(5):1018–29.PubMedCrossRefGoogle Scholar
  42. 42.
    Bottcher-Haberzeth S, Biedermann T, Reichmann E. Tissue engineering of skin. Burns. 2010;36(4):450–60.PubMedCrossRefGoogle Scholar
  43. 43.
    MacNeil S. Progress and opportunities for tissue-engineered skin. Nature. 2007;445(7130):874–80.PubMedCrossRefGoogle Scholar
  44. 44.
    Shahrokhi S, Arno A, Jeschke MG. The use of dermal substitutes in burn surgery: acute phase. Wound Repair Regen. 2014;22(1):14–22.PubMedCrossRefGoogle Scholar
  45. 45.
    van der Veen VC, Boekema BK, Ulrich MM, Middelkoop E. New dermal substitutes. Wound Repair Regen. 2011;19(Suppl 1):s59–65.PubMedCrossRefGoogle Scholar
  46. 46.
    Philandrianos C, Andrac-Meyer L, Mordon S, Feuerstein JM, Sabatier F, Veran J, Magalon G, Casanova D. Comparison of five dermal substitutes in full-thickness skin wound healing in a porcine model. Burns. 2012;38(6):820–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg. 2002;55(3):185–93.PubMedCrossRefGoogle Scholar
  48. 48.
    Nguyen DQ, Potokar TS, Price P. An objective long-term evaluation of Integra (a dermal skin substitute) and split thickness skin grafts, in acute burns and reconstructive surgery. Burns. 2010;36(1):23–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Bargues L, Boyer S, Leclerc T, Duhamel P, Bey E. Incidence and microbiology of infectious complications with the use of artificial skin Integra in burns. Ann Chir Plast Esthet. 2009;54(6):533–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Lohana P, Hassan S, Watson SB. Integra in burns reconstruction: our experience and report of an unusual immunological reaction. Ann Burns Fire Disasters. 2014;27(1):17–21.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Dantzer E, Braye FM. Reconstructive surgery using an artificial dermis (Integra): results with 39 grafts. Br J Plast Surg. 2001;54(8):659–64.PubMedCrossRefGoogle Scholar
  52. 52.
    Pollard RL, Kennedy PJ, Maitz PK. The use of artificial dermis (Integra) and topical negative pressure to achieve limb salvage following soft-tissue loss caused by meningococcal septicaemia. J Plast Reconstr Aesthet Surg. 2008;61(3):319–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Leffler M, Horch RE, Dragu A, Bach AD. The use of the artificial dermis (Integra) in combination with vacuum assisted closure for reconstruction of an extensive burn scar—a case report. J Plast Reconstr Aesthet Surg. 2010;63(1):e32–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Sinna R, Qassemyar Q, Boloorchi A, Benhaim T, Carton S, Perignon D, Robbe M. Role of the association artificial dermis and negative pressure therapy: about two cases. Ann Chir Plast Esthet. 2009;54(6):582–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Moiemen NS, Yarrow J, Kamel D, Kearns D, Mendonca D. Topical negative pressure therapy: does it accelerate neovascularisation within the dermal regeneration template, Integra? A prospective histological in vivo study. Burns. 2010;36(6):764–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Kolokythas P, Aust MC, Vogt PM, Paulsen F. Dermal substitute with the collagen-elastin matrix Matriderm in burn injuries: a comprehensive review. Handchir Mikrochir Plast Chir. 2008;40(6):367–71.PubMedCrossRefGoogle Scholar
  57. 57.
    van Zuijlen PP, van Trier AJ, Vloemans JF, Groenevelt F, Kreis RW, Middelkoop E. Graft survival and effectiveness of dermal substitution in burns and reconstructive surgery in a one-stage grafting model. Plast Reconstr Surg. 2000;106(3):615–23.PubMedCrossRefGoogle Scholar
  58. 58.
    Haslik W, Kamolz LP, Manna F, Hladik M, Rath T, Frey M. Management of full-thickness skin defects in the hand and wrist region: first long-term experiences with the dermal matrix Matriderm. J Plast Reconstr Aesthet Surg. 2010;63(2):360–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Bottcher-Haberzeth S, Biedermann T, Schiestl C, Hartmann-Fritsch F, Schneider J, Reichmann E, Meuli M. Matriderm® 1 mm versus Integra® Single Layer 1.3 mm for one-step closure of full thickness skin defects: a comparative experimental study in rats. Pediatr Surg Int. 2012;28(2):171–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Conconi MT, De Coppi P, Di Liddo R, Vigolo S, Zanon GF, Parnigotto PP, Nussdorfer GG. Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int. 2005;18(6):727–34.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Burra P, Tomat S, Conconi MT, Macchi C, Russo FP, Parnigotto PP, Naccarato R, Nussdorfer GG. Acellular liver matrix improves the survival and functions of isolated rat hepatocytes cultured in vitro. Int J Mol Med. 2004;14(4):511–5.PubMedPubMedCentralGoogle Scholar
  62. 62.
    van der Veen VC, van der Wal MB, van Leeuwen MC, Ulrich MM, Middelkoop E. Biological background of dermal substitutes. Burns. 2010;36(3):305–21.CrossRefGoogle Scholar
  63. 63.
    Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns. 1995;21(4):243–8.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Kim EK, Hong JP. Efficacy of negative pressure therapy to enhance take of 1-stage allodermis and a split-thickness graft. Ann Plast Surg. 2007;58(5):536–40.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Yi JW, Kim JK. Prospective randomized comparison of scar appearances between cograft of acellular dermal matrix with autologous split-thickness skin and autologous split-thickness skin graft alone for full-thickness skin defects of the extremities. Plast Reconstr Surg. 2015;135(3):609e–16e.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Greenwood JE, Mackie IP. Neck contracture release with matriderm collagen/elastin dermal matrix. Eplasty. 2011;11:e16.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Yildirimer L, Thanh NT, Seifalian AM. Skin regeneration scaffolds: a multimodal bottom-up approach. Trends Biotechnol. 2012;30(12):638–48.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Tan H, Wasiak J, Paul E, Cleland H. Effective use of Biobrane as a temporary wound dressing prior to definitive split-skin graft in the treatment of severe burn: a retrospective analysis. Burns. 2015;41(5):969–76.PubMedCrossRefGoogle Scholar
  69. 69.
    Greenwood JE, Clausen J, Kavanagh S. Experience with biobrane: uses and caveats for success. Eplasty. 2009;9:e25.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Cheah AKW, Chong SJ, Tan BK. Early experience with Biobrane in Singapore in the management of partial thickness burns. Proc Singapore Healthcare. 2014;23(3):196–200.CrossRefGoogle Scholar
  71. 71.
    Farroha A, Frew Q, El-Muttardi N, Philp B, Dziewulski P. The use of Biobrane(R) to dress split-thickness skin graft in paediatric burns. Ann Burns Fire Disasters. 2013;26(2):94–7.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Pham C, Greenwood J, Cleland H, Woodruff P, Maddern G. Bioengineered skin substitutes for the management of burns: a systematic review. Burns. 2007;33(8):946–57.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Austin RE, Merchant N, Shahrokhi S, Jeschke MG. A comparison of Biobrane and cadaveric allograft for temporizing the acute burn wound: cost and procedural time. Burns. 2015;41(4):749–53.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Debels H, Hamdi M, Abberton K, Morrison W. Dermal matrices and bioengineered skin substitutes: a critical review of current options. Plast Reconstr Surg Global Open. 2015;3(1):e284.CrossRefGoogle Scholar
  75. 75.
    Uhlig C, Rapp M, Hartmann B, Hierlemann H, Planck H, Dittel KK. Suprathel-an innovative, resorbable skin substitute for the treatment of burn victims. Burns. 2007;33:221–9.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Kamolz LP, Lumenta DB, Kitzinger HB, Frey M. Tissue engineering for cutaneous wounds: an overview of current standards and possibilities. Eur Surg. 2008;40(1):19–26.CrossRefGoogle Scholar
  77. 77.
    Highton L, Wallace C, Shah M. Use of Suprathel® for partial thickness burns in children. Burns. 2013;39(1):136–41.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Rashaan ZM, Krijnen P, Allema JH, Vloemans AF, Schipper IB, Breederveld RS. Usability and effectiveness of Suprathel® in partial thickness burns in children. Eur J Trauma Emerg Surg. 2017;43(4):549–56.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Schwarze H, Küntscher M, Uhlig C, Hierlemann H, Prantl L, Noack N, Hartmann B. Suprathel, a new skin substitute, in the management of donor sites of split-thickness skin grafts: results of a clinical study. Burns. 2007;33:850–4.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Madry R, Struzyna J, Stachura-Kulach A, Drozdz Ł, Bugaj M. Effectiveness of Suprathel® application in partial thickness burns, frostbites and Lyell syndrome treatment. Pol Przegl Chir. 2011;83:541–8.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Fischer S, Kremer T, Horter J, Schaefer A, Ziegler B, Kneser U, Hirche C. Suprathel® for severe burns in the elderly: case report and review of the literature. Burns. 2016;42(5):e86–92.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Pandya AN, Woodward B, Parkhouse N. The use of cultured autologous keratinocytes with integra in the resurfacing of acute burns. Plast Reconstr Surg. 1998;102(3):825–8.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Cooper ML, Andree C, Hansbrough JF, Zapata-Sirvent RL, Spielvogel RL. Direct comparison of a cultured composite skin substitute containing human keratinocytes and fibroblasts to an epidermal sheet graft containing human keratinocytes on athymic mice. J Invest Dermatol. 1993;101(6):811–9.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    El Ghalbzouri A, Jonkman MF, Dijkman R, Ponec M. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes. J Invest Dermatol. 2005;124(1):79–86.CrossRefGoogle Scholar
  85. 85.
    Eweida AM, Marei MK. Naturally occurring extracellular matrix scaffolds for dermal regeneration: do they really need cells? Biomed Res Int. 2015;2015:839694.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Simman R, Priebe CJ Jr, Simon M. Reconstruction of aplasia cutis congenita of the trunk in a newborn infant using acellular allogenic dermal graft and cultured epithelial autografts. Ann Plast Surg. 2000;44(4):451–4.PubMedCrossRefGoogle Scholar
  87. 87.
    Boyce ST, Goretsky MJ, Greenhalgh DG, Kagan RJ, Rieman MT, Warden GD. Comparative assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns. Ann Surg. 1995;222(6):743–52.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Boyce ST, Kagan RJ, Meyer NA, Yakuboff KP, Warden GD. The 1999 clinical research award. Cultured skin substitutes combined with Integra Artificial Skin to replace native skin autograft and allograft for the closure of excised full-thickness burns. J Burn Care Rehabil. 1999;20(6):453–61.PubMedCrossRefGoogle Scholar
  89. 89.
    Boyce ST, Kagan RJ, Yakuboff KP, Meyer NA, Rieman MT, Greenhalgh DG, Warden GD. Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns. Ann Surg. 2002;235(2):269–79.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Boyce ST, Kagan RJ, Greenhalgh DG, Warner P, Yakuboff KP, Palmieri T, Warden GD. Cultured skin substitutes reduce requirements for harvesting of skin autograft for closure of excised, full-thickness burns. J Trauma. 2006;60(4):821–9.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Hansbrough JF, Boyce ST, Cooper ML, Foreman TJ. Burn wound closure with cultured autologous keratinocytes and fibroblasts attached to a collagen-glycosaminoglycan substrate. JAMA. 1989;262(15):2125–30.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Golinski PA, Zoller N, Kippenberger S, Menke H, Bereiter-Hahn J, Bernd A. Development of an engraftable skin equivalent based on matriderm with human keratinocytes and fibroblasts. Handchir Mikrochir Plast Chir. 2009;41(6):327–32.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Golinski P, Menke H, Hofmann M, Valesky E, Butting M, Kippenberger S, Bereiter-Hahn J, Bernd A, Kaufmann R, Zoeller NN. Development and characterization of an engraftable tissue-cultured skin autograft: alternative treatment for severe electrical injuries. Cells Tissues Organs. 2014;200(3–4):227–39.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Zoller N, Valesky E, Butting M, Hofmann M, Kippenberger S, Bereiter-Hahn J, Bernd A, Kaufmann R. Clinical application of a tissue-cultured skin autograft: an alternative for the treatment of non-healing or slowly healing wounds? Dermatology. 2014;229(3):190–8.CrossRefGoogle Scholar
  95. 95.
    Pontiggia L, Klar A, Bottcher-Haberzeth S, Biedermann T, Meuli M, Reichmann E. Optimizing in vitro culture conditions leads to a significantly shorter production time of human dermo-epidermal skin substitutes. Pediatr Surg Int. 2013;29(3):249–56.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Hartmann-Fritsch F, Biedermann T, Braziulis E, Luginbuhl J, Pontiggia L, Bottcher-Haberzeth S, van Kuppevelt TH, Faraj KA, Schiestl C, Meuli M, Reichmann E. Collagen hydrogels strengthened by biodegradable meshes are a basis for dermo-epidermal skin grafts intended to reconstitute human skin in a one-step surgical intervention. J Tissue Eng Regen Med. 2016;10:81–91.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Marino D, Luginbuhl J, Scola S, Meuli M, Reichmann E. Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med. 2014;6(221):221ra14.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Marino D, Reichmann E, Meuli M. Skingineering. Eur J Pediatr Surg. 2014;24(3):205–13.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Tanner JC Jr, Vandeput J, Olley JF. The mesh skin graft. Plast Reconstr Surg. 1964;34:287–92.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Hsieh CS, Schuong JY, Huang WS, Huang TT. Five years’ experience of the modified Meek technique in the management of extensive burns. Burns. 2008;34(3):350–4.CrossRefGoogle Scholar
  101. 101.
    Menon S, Li Z, Harvey JG, Holland AJ. The use of the Meek technique in conjunction with cultured epithelial autograft in the management of major paediatric burns. Burns. 2013;39(4):674–9.CrossRefGoogle Scholar
  102. 102.
    Braye F, Oddou L, Bertin-Maghit M, Belgacem S, Damour O, Spitalier P, Guillot M, Bouchard C, Gueugniaud PY, Goudeau M, Petit P, Tissot E. Widely meshed autograft associated with cultured autologous epithelium for the treatment of major burns in children: report of 12 cases. Eur J Pediatr Surg. 2000;10(1):35–40.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    James SE, Booth S, Dheansa B, Mann DJ, Reid MJ, Shevchenko RV, Gilbert PM. Sprayed cultured autologous keratinocytes used alone or in combination with meshed autografts to accelerate wound closure in difficult-to-heal burns patients. Burns. 2010;36(3):e10–20.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Meek CP. Successful microdermagrafting using the Meek-Wall microdermatome. Am J Surg. 1958;96(4):557–8.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Zhang ML, Wang CY, Chang ZD, Cao DX, Han X. Microskin grafting. II. Clinical report. Burns Incl Therm Inj. 1986;12(8):544–8.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Zhang ML, Chang ZD, Wang CY, Fang CH. Microskin grafting in the treatment of extensive burns: a preliminary report. J Trauma. 1988;28(6):804–7.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Kreis RW, Mackie DP, Vloemans AW, Hermans RP, Hoekstra MJ. Widely expanded postage stamp skin grafts using a modified Meek technique in combination with an allograft overlay. Burns. 1993;19(2):142–5.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Kreis RW, Mackie DP, Hermans RR, Vloemans AR. Expansion techniques for skin grafts: comparison between mesh and Meek island (sandwich-) grafts. Burns. 1994;20(Suppl 1):S39–42.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Raff T, Hartmann B, Wagner H, Germann G. Experience with the modified Meek technique. Acta Chir Plast. 1996;38(4):142–6.PubMedPubMedCentralGoogle Scholar
  110. 110.
    McHeik JN, Barrault C, Levard G, Morel F, Bernard FX, Lecron JC. Epidermal healing in burns: autologous keratinocyte transplantation as a standard procedure: update and perspective. Plast Reconstr Surg Glob Open. 2014;2(9):e218.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Lumenta DB, Kamolz LP, Frey M. Adult burn patients with more than 60% TBSA involved-Meek and other techniques to overcome restricted skin harvest availability—the Viennese Concept. J Burn Care Res. 2009;30(2):231–42.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Zermani RG, Zarabini A, Trivisonno A. Micrografting in the treatment of severely burned patients. Burns. 1997;23(7–8):604–7.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Lari AR, Gang RK. Expansion technique for skin grafts (Meek technique) in the treatment of severely burned patients. Burns. 2001;27(1):61–6.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Lee SS, Tsai CC, Lai CS, Lin SD. An easy method for preparation of postage stamp autografts. Burns. 2000;26(8):741–9.CrossRefGoogle Scholar
  115. 115.
    Lee SS, Lin TM, Chen YH, Lin SD, Lai CS. “Flypaper technique” a modified expansion method for preparation of postage stamp autografts. Burns. 2005;31(6):753–7.CrossRefGoogle Scholar
  116. 116.
    Lee SS, Chen YH, Sun IF, Chen MC, Lin SD, Lai CS. “Shift to right flypaper technique” a refined method for postage stamp autografting preparation. Burns. 2007;33(6):764–9.CrossRefGoogle Scholar
  117. 117.
    Hackl F, Bergmann J, Granter SR, Koyama T, Kiwanuka E, Zuhaili B, Pomahac B, Caterson EJ, Junker JP, Eriksson E. Epidermal regeneration by micrograft transplantation with immediate 100fold expansion. Plast Reconstr Surg. 2012;129(3):443e–52.CrossRefGoogle Scholar
  118. 118.
    Danks RR, Lairet K. Innovations in caring for a large burn in the Iraq war zone. J Burn Care Res. 2010;31(4):665–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Dorai AA, Lim CK, Fareha AC, Halim AS. Cultured epidermal autografts in combination with MEEK Micrografting technique in the treatment of major burn injuries. Med J Malaysia. 2008;63(Suppl A):44.PubMedGoogle Scholar
  120. 120.
    Papp A, Harma M. A collagen based dermal substitute and the modified Meek technique in extensive burns. Report of three cases. Burns. 2003;29(2):167–71.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Kopp J, Magnus Noah E, Rubben A, Merk HF, Pallua N. Radical resection of giant congenital melanocytic nevus and reconstruction with meek-graft covered integra dermal template. Dermatol Surg. 2003;29(6):653–7.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Butler KL, Goverman J, Ma H, Fischman A, Yu YM, Bilodeau M, Rad AM, Bonab AA, Tompkins RG, Fagan SP. Stem cells and burns: review and therapeutic implications. J Burn Care Res. 2010;31(6):874–81.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science. 2014;346(6212):941–5.CrossRefGoogle Scholar
  124. 124.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.CrossRefGoogle Scholar
  125. 125.
    Yamanaka S. The winding road to pluripotency (Nobel Lecture). Angew Chem. 2013;52(52):13900–9.CrossRefGoogle Scholar
  126. 126.
    Garber K. RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol. 2015;33(9):890–1.PubMedCrossRefGoogle Scholar
  127. 127.
    Charruyer A, Ghadially R. Stem cells and tissue-engineered skin. Skin Pharmacol Physiol. 2009;22(2):55–62.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Ma D, Chua AW, Yang E, Teo P, Ting Y, Song C, Lane EB, Lee ST. Breast cancer resistance protein identifies clonogenic keratinocytes in human interfollicular epidermis. Stem Cell Res Ther. 2015;6:43.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E, Recchia A, Maruggi G, Ferrari G, Provasi E, Bonini C, Capurro S, Conti A, Magnoni C, Giannetti A, De Luca M. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med. 2006;12(12):1397–402.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001;104(2):233–45.PubMedCrossRefGoogle Scholar
  131. 131.
    Claudinot S, Nicolas M, Oshima H, Rochat A, Barrandon Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc Natl Acad Sci U S A. 2005;102(41):14677–82.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Charbord P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther. 2010;21(9):1045–56.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Miki T, Mitamura K, Ross MA, Stolz DB, Strom SC. Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol. 2007;75(2):91–6.PubMedCrossRefGoogle Scholar
  134. 134.
    Kita K, Gauglitz GG, Phan TT, Herndon DN, Jeschke MG. Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev. 2010;19(4):491–502.PubMedCrossRefGoogle Scholar
  135. 135.
    Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007;25(6):1384–92.PubMedCrossRefGoogle Scholar
  136. 136.
    Zhang X, Hirai M, Cantero S, Ciubotariu R, Dobrila L, Hirsh A, Igura K, Satoh H, Yokomi I, Nishimura T, Yamaguchi S, Yoshimura K, Rubinstein P, Takahashi TA. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J Cell Biochem. 2011;112(4):1206–18.PubMedCrossRefGoogle Scholar
  137. 137.
    Driskell RR, Clavel C, Rendl M, Watt FM. Hair follicle dermal papilla cells at a glance. J Cell Sci. 2011;124(Pt 8):1179–82.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Richardson GD, Arnott EC, Whitehouse CJ, Lawrence CM, Hole N, Jahoda CA. Cultured cells from the adult human hair follicle dermis can be directed toward adipogenic and osteogenic differentiation. J Invest Dermatol. 2005;124(5):1090–1.PubMedCrossRefGoogle Scholar
  139. 139.
    Ma D, Kua JE, Lim WK, Lee ST, Chua AW. In vitro characterization of human hair follicle dermal sheath mesenchymal stromal cells and their potential in enhancing diabetic wound healing. Cytotherapy. 2015;17(8):1036–51.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, Isik F. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells. 2004;22(5):812–22.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Kim DH, Yoo KH, Choi KS, Choi J, Choi SY, Yang SE, Yang YS, Im HJ, Kim KH, Jung HL, Sung KW, Koo HH. Gene expression profile of cytokine and growth factor during differentiation of bone marrow-derived mesenchymal stem cell. Cytokine. 2005;31(2):119–26.PubMedCrossRefGoogle Scholar
  142. 142.
    Akino K, Mineda T, Akita S. Early cellular changes of human mesenchymal stem cells and their interaction with other cells. Wound Repair Regen. 2005;13(4):434–40.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25(10):2648–59.CrossRefPubMedGoogle Scholar
  144. 144.
    Yoshikawa T, Mitsuno H, Nonaka I, Sen Y, Kawanishi K, Inada Y, Takakura Y, Okuchi K, Nonomura A. Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg. 2008;121(3):860–77.CrossRefPubMedGoogle Scholar
  145. 145.
    Hanson SE, Kleinbeck KR, Cantu D, Kim J, Bentz ML, Faucher LD, Kao WJ, Hematti P. Local delivery of allogeneic bone marrow and adipose tissue-derived mesenchymal stromal cells for cutaneous wound healing in a porcine model. J Tissue Eng Regen Med. 2016;10(2):E90–E100.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    English K. Mechanisms of mesenchymal stromal cell immunomodulation. Immunol Cell Biol. 2013;91(1):19–26.CrossRefPubMedGoogle Scholar
  147. 147.
    Mansilla E, Aquino VD, Roque G, Tau JM, Maceira A. Time and regeneration in burns treatment: heading into the first worldwide clinical trial with cadaveric mesenchymal stem cells. Burns. 2012;38(3):450–2.CrossRefGoogle Scholar
  148. 148.
    Mansilla E, Marin G, Berges M, Scafatti S, Rivas J, Nunez A, Menvielle M, Lamonega R, Gardiner C, Drago H, Sturla F, Portas M, Bossi S, et al. Cadaveric bone marrow mesenchymal stem cells: first experience treating a patient with large severe burns. Burns Trauma. 2015;3:17.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    U.S. National Library of Medicine. Clinical Trials.gov. https://clinicaltrials.gov/ct2/home. Accessed 10 Nov 2015.
  150. 150.
    Karri VV, Kuppusamy G, Talluri SV, Yamjala K, Mannemala SS, Malayandi R. Current and emerging therapies in the management of diabetic foot ulcers. Curr Med Res Opin. 2015;32(3):519–42.CrossRefGoogle Scholar
  151. 151.
    Chua A, Song C, Chai A, Chan L, Tan KC. The impact of skin banking and the use of its cadaveric skin allografts for severe burn victims in Singapore. Burns. 2004;30(7):696–700.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alvin Wen Choong Chua
    • 1
  • Chairani Fitri Saphira
    • 1
    • 2
  • Si Jack Chong
    • 1
  1. 1.Department of Plastic, Reconstructive & Aesthetic SurgerySingapore General HospitalSingaporeSingapore
  2. 2.Department of SurgeryDr. Mohamad Soewandhie General HospitalSurabayaIndonesia

Personalised recommendations