Advertisement

Stem Cells and Burn

  • Anesh Prasai
  • Amina El Ayadi
  • David N. Herndon
  • Celeste C. FinnertyEmail author
Chapter

Abstract

Tremendous clinical advancement has been made in the last four decades in terms of treating burn victims. The authors discuss human umbilical cord-derived stem cells, bone marrow-derived mesenchymal stem cells, induced pluripotent stem cells, and adipose-derived stem cells.

Application of stem cells to address burn wound healing comorbidities has a promising future.

Many unaddressed questions including the optimum source of the stem cells, method of isolation, characterization, and especially follow-up on the molecular mechanism following the application of stem cells on the burn wounds need to be further studied in detail.

References

  1. 1.
    Herndon DN. Total burn care. Philadelphia: Saunders Elsevier; 2007.Google Scholar
  2. 2.
    Finnerty CC, Jeschke MG, Branski LK, Barret JP, Dziewulski P, Herndon DN. Hypertrophic scarring: the greatest unmet challenge after burn injury. Lancet. 2016;388(10052):1427–36.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    van Zuijlen P, Gardien K, Jaspers M, Bos EJ, Baas DC, van Trier A, Middelkoop E. Tissue engineering in burn scar reconstruction. Burns Trauma. 2015;3:18.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Prasai A, El Ayadi A, Mifflin RC, Wetzel MD, Andersen CR, Redl H, Herndon DN, Finnerty CC. Characterization of adipose-derived stem cells following burn injury. Stem Cell Rev. 2017;13(6):781–92.PubMedCentralCrossRefGoogle Scholar
  5. 5.
    Butler KL, Goverman J, Ma H, Fischman A, Yu YM, Bilodeau M, Rad AM, Bonab AA, Tompkins RG, Fagan SP. Stem cells and burns: review and therapeutic implications. J Burn Care Res. 2010;31(6):874–81.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bhatia A, O’Brien K, Chen M, Wong A, Garner W, Woodley DT, Li W. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs. Mol Ther Methods Clin Dev. 2016;3:16041.PubMedCentralCrossRefGoogle Scholar
  7. 7.
    Clinicaltrails.gov. Umbilical cord mesenchymal stem cells and burns. 2017.Google Scholar
  8. 8.
    Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30(1):42–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringdén O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363(9419):1439–41.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014;32(3):252–60.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Campeau PM, Rafei M, Francois M, Birman E, Forner KA, Galipeau J. Mesenchymal stromal cells engineered to express erythropoietin induce anti-erythropoietin antibodies and anemia in allorecipients. Mol Ther. 2009;17(2):369–72.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Beggs KJ, Lyubimov A, Borneman JN, Bartholomew A, Moseley A, Dodds R, Archambault MP, Smith AK, McIntosh KR. Immunologic consequences of multiple, high-dose administration of allogeneic mesenchymal stem cells to baboons. Cell Transplant. 2006;15(8–9):711–21.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Itoh M, Umegaki-Arao N, Guo Z, Liu L, Higgins CA, Christiano AM. Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS One. 2013;8(10):e77673.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Sabella N. Use of fetal membranes in skin grafting. Med Rec NY. 1913;83:478.Google Scholar
  15. 15.
    Eskandarlou M, Azimi M, Rabiee S, Seif Rabiee MA. The healing effect of amniotic membrane in burn patients. World J Plast Surg. 2016;5(1):39–44.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Branski LK, Herndon DN, Celis MM, Norbury WB, Masters OE, Jeschke MG. Amnion in the treatment of pediatric partial-thickness facial burns. Burns. 2008;34(3):393–9.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Reza HM, Ng BY, Phan TT, Tan DT, Beuerman RW, Ang LP. Characterization of a novel umbilical cord lining cell with CD227 positivity and unique pattern of P63 expression and function. Stem Cell Rev. 2011;7(3):624–38.CrossRefGoogle Scholar
  18. 18.
    Moenadjat Y, Merlina M, Surjadi CF, Sardjono CT, Kusnadi Y, Sandra F. The application of human umbilical cord blood mononuclear cells in the management of deep partial thickness burn. Med J Indones. 2013;22(2):92–7.CrossRefGoogle Scholar
  19. 19.
    Arno AI, Amini-Nik S, Blit PH, Al-Shehab M, Belo C, Herer E, Tien CH, Jeschke MG. Human Wharton’s jelly mesenchymal stem cells promote skin wound healing through paracrine signaling. Stem Cell Res Ther. 2014;5(1):28.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Liu L, Yu Y, Hou Y, Chai J, Duan H, Chu W, Zhang H, Hu Q, Du J. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PLoS One. 2014;9(2):e88348.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Li X, Liu L, Yang J, Yu Y, Chai J, Wang L, Ma L, Yin H. Exosome derived from human umbilical cord mesenchymal stem cell mediates mir-181c attenuating burn-induced excessive inflammation. EBioMedicine. 2016;8:72–82.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Panepucci RA, Siufi JL, Silva WA Jr, Proto-Siquiera R, Neder L, Orellana M, Rocha V, Covas DT, Zago MA. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells. 2004;22(7):1263–78.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Lee M, Jeong SY, Ha J, Kim M, Jin HJ, Kwon SJ, Chang JW, Choi SJ, Oh W, Yang YS, Kim JS, Jeon HB. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo. Biochem Biophys Res Commun. 2014;446(4):983–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    El Omar R, Beroud J, Stoltz JF, Menu P, Velot E, Decot V. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng Part B Rev. 2014;20(5):523–44.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105(3):369–77.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry P. Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol. 2003;196(2):245–50.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Bara JJ, Richards RG, Alini M, Stoddart MJ. Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells. 2014;32(7):1713–23.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Fu X, Fang L, Li X, Cheng B, Sheng Z. Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury. Wound Rep Regen. 2006;14(3):325–35.CrossRefGoogle Scholar
  29. 29.
    Pastides PS, Welck MJ, Khan WS. Use of bone marrow derived stem cells in trauma and orthopaedics: a review of current concepts. World J Orthop. 2015;6(6):462–8.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994;1(1):71–81.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Shumakov VI, Onishchenko NA, Rasulov MF, Krasheninnikov ME, Zaidenov VA. Mesenchymal bone marrow stem cells more effectively stimulate regeneration of deep burn wounds than embryonic fibroblasts. Bull Exp Biol Med. 2003;136(2):192–5.CrossRefGoogle Scholar
  33. 33.
    Rasulov MF, Vasilchenkov AV, Onishchenko NA, Krasheninnikov ME, Kravchenko VI, Gorshenin TL, Pidtsan RE, Potapov IV. First experience of the use bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns. Bull Exp Biol Med. 2005;139(1):141–4.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, Shrayer D, Carson P. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007;13(6):1299–312.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Chen L, Tredget EE, Liu C, Wu Y. Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice. PLoS One. 2009;4(9):e7119.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Chen L, Tredget EE, Wu PY, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One. 2008;3(4):e1886.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Borena BM, Pawde AM, Amarpal AHP, Kinjavdekar P, Singh R, Kumar D. Evaluation of autologous bone marrow-derived nucleated cells for healing of full-thickness skin wounds in rabbits. Int Wound J. 2010;7(4):249–60.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Huang S, Lu G, Wu Y, Jirigala E, Xu Y, Ma K, Fu X. Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair. J Dermatol Sci. 2012;66(1):29–36.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kwon DS, Gao X, Liu YB, Dulchavsky DS, Danyluk AL, Bansal M, Chopp M, McIntosh K, Arbab AS, Dulchavsky SA, Gautam SC. Treatment with bone marrow-derived stromal cells accelerates wound healing in diabetic rats. Int Wound J. 2008;5(3):453–63.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Li H, Fu X, Ouyang Y, Cai C, Wang J, Sun T. Adult bone-marrow-derived mesenchymal stem cells contribute to wound healing of skin appendages. Cell Tissue Res. 2006;326(3):725–36.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Sheng Z, Fu X, Cai S, Lei Y, Sun T, Bai X, Chen M. Regeneration of functional sweat gland-like structures by transplanted differentiated bone marrow mesenchymal stem cells. Wound Repair Regen. 2009;17(3):427–35.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, Isik F. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells. 2004;22(5):812–22.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kimbrel EA, Lu SJ. Potential clinical applications for human pluripotent stem cell-derived blood components. Stem Cells Int. 2011;2011:273076.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Rami F, Beni SN, Kahnamooi MM, Rahimmanesh I, Salehi AR, Salehi R. Recent advances in therapeutic applications of induced pluripotent stem cells. Cell Reprogram. 2017;19(2):65–74.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Daley GQ, Lensch MW, Jaenisch R, Meissner A, Plath K, Yamanaka S. Broader implications of defining standards for the pluripotency of iPSCs. Cell Stem Cell. 2009;4(3):200–1.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Scott CT, Magnus D. Wrongful termination: lessons from the Geron clinical trial. Stem Cells Transl Med. 2014;3(12):1398–401.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Menasche P, Vanneaux V, Fabreguettes JR, Bel A, Tosca L, Garcia S, Bellamy V, Farouz Y, Pouly J, Damour O, Périer MC, Desnos M, Hagège A, Agbulut O, Bruneval P, Tachdjian G, Trouvin JH, Larghero J. Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. Eur Heart J. 2015;36(12):743–50.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Soejitno A, Prayudi PK. The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Ther Adv Endocrinol Metab. 2011;2(5):197–210.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Chang YC, Chang WC, Hung KH, Yang DM, Cheng YH, Liao YW, Woung LC, Tsai CY, Hsu CC, Lin TC, Liu JH, Chiou SH, Peng CH, Chen SJ. The generation of induced pluripotent stem cells for macular degeneration as a drug screening platform: identification of curcumin as a protective agent for retinal pigment epithelial cells against oxidative stress. Front Aging Neurosci. 2014;6:191.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Itoh M, Kiuru M, Cairo MS, Christiano AM. Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2011;108(21):8797–802.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Guenou H, Nissan X, Larcher F, Feteira J, Lemaitre G, Saidani M, Del Rio M, Barrault CC, Bernard FX, Peschanski M, Baldeschi C, Waksman G. Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study. Lancet. 2009;374(9703):1745–53.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4(6):472–6.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Miyazaki S, Yamamoto H, Miyoshi N, Takahashi H, Suzuki Y, Haraguchi N, Ishii H, Doki Y, Mori M. Emerging methods for preparing iPS cells. Jap J Clin Oncol. 2012;42(9):773–9.CrossRefGoogle Scholar
  54. 54.
    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100(9):1249–60.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lindroos B, Suuronen R, Miettinen S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev. 2011;7(2):269–91.CrossRefGoogle Scholar
  57. 57.
    Beeson W, Woods E, Agha R. Tissue engineering, regenerative medicine, and rejuvenation in 2010: the role of adipose-derived stem cells. Facial Plast Surg. 2011;27(4):378–87.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Sumi M, Sata M, Toya N, Yanaga K, Ohki T, Nagai R. Transplantation of adipose stromal cells, but not mature adipocytes, augments ischemia-induced angiogenesis. Life Sci. 2007;80(6):559–65.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Bliley JM, Argenta A, Satish L, McLaughlin MM, Dees A, Tompkins-Rhoades C, Marra KG, Rubin JP. Administration of adipose-derived stem cells enhances vascularity, induces collagen deposition, and dermal adipogenesis in burn wounds. Burns. 2016;42(6):1212–22.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Cho KS, Park HK, Park HY, Jung JS, Jeon SG, Kim YK, Roh HJ. IFATS collection: immunomodulatory effects of adipose tissue-derived stem cells in an allergic rhinitis mouse model. Stem Cells. 2009;27(1):259–65.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Yun IS, Jeon YR, Lee WJ, Lee JW, Rah DK, Tark KC, Lew DH. Effect of human adipose derived stem cells on scar formation and remodeling in a pig model: a pilot study. Dermatol Surg. 2012;38(10):1678–88.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Wang J, Hao H, Huang H, Chen D, Han Y, Han W. The effect of adipose-derived stem cells on full-thickness skin grafts. Biomed Res Int. 2016;2016:1464725.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Domergue S, Bony C, Maumus M, Toupet K, Frouin E, Rigau V, Vozenin MC, Magalon G, Jorgensen C, Noël D. Comparison between stromal vascular fraction and adipose mesenchymal stem cells in remodeling hypertrophic scars. PLoS One. 2016;11(5):e0156161.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Li Y, Zhang W, Gao J, Liu J, Wang H, Li J, Yang X, He T, Guan H, Zheng Z, Han S, Dong M, Han J, Shi J, Hu D. Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the p38/MAPK signaling pathway. Stem Cell Res Ther. 2016;7(1):102.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anesh Prasai
    • 1
  • Amina El Ayadi
    • 1
  • David N. Herndon
    • 1
  • Celeste C. Finnerty
    • 1
    Email author
  1. 1.Department of SurgeryUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations