Bone Repair and Regeneration Are Regulated by the Wnt Signaling Pathway

  • Khosrow Siamak Houschyar
  • Dominik Duscher
  • Zeshaan N. Maan
  • Malcolm P. Chelliah
  • Mimi R. Borrelli
  • Kamran Harati
  • Christoph Wallner
  • Susanne Rein
  • Christian Tapking
  • Georg Reumuth
  • Gerrit Grieb
  • Frank Siemers
  • Marcus Lehnhardt
  • Björn Behr


The Wnt signaling pathway is central to a large number of diverse cellular processes during embryological development, including those involved in the formation of bone and cartilage. Wnt signaling continues to play a critical role in the homeostasis, repair, and regeneration of bone in adults. Imbalances in this highly conserved and complex system contribute to a number of diseases, including impaired bone healing, autoimmune disease, and cancer. Critical-sized skeletal defects represent a major challenge to the reconstructive surgeon and are often associated with significant morbidity. The Wnt pathway is an attractive therapeutic target with potential to directly modulate stem cells responsible for skeletal tissue regeneration. Recent research indicates that Wnt ligands are able to promote bone growth, suggesting that Wnt factors could be used to stimulate bone healing of nonunions and large bony defects. This chapter explores the essential role of the Wnt pathway in bone regeneration.


Wnt Stem cells Bone Regeneration 


  1. 1.
    Fisher JN, Peretti GM, Scotti C. Stem cells for bone regeneration: from cell-based therapies to decellularised engineered extracellular matrices. Stem Cells Int. 2016;2016:9352598.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42:551–5.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Mountziaris PM, Mikos AG. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng Part B Rev. 2008;14:179–86.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Victoria G, Petrisor B, Drew B, Dick D. Bone stimulation for fracture healing: what’s all the fuss? Indian J Orthop. 2009;43:117–20.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA. Growth factor regulation of fracture repair. J Bone Miner Res. 1999;14:1805–15.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Wang Y, Li YP, Paulson C, Shao JZ, Zhang X, Wu M, Chen W. Wnt and the Wnt signaling pathway in bone development and disease. Front Biosci (Landmark Ed). 2014;19:379–407.CrossRefGoogle Scholar
  7. 7.
    Chen T, Li J, Córdova LA, Liu B, Mouraret S, Sun Q, Salmon B, Helms J. A WNT protein therapeutic improves the bone-forming capacity of autografts from aged animals. Sci Rep. 2018;8:119.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Secreto FJ, Hoeppner LH, Westendorf JJ. Wnt signaling during fracture repair. Curr Osteoporos Rep. 2009;7:64–9.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Ingber DE, Levin M. What lies at the interface of regenerative medicine and developmental biology? Development. 2007;134:2541–7.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Gadjanski I, Spiller K, Vunjak-Novakovic G. Time-dependent processes in stem cell-based tissue engineering of articular cartilage. Stem Cell Rev. 2012;8:863–81.PubMedCentralCrossRefGoogle Scholar
  11. 11.
    Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;111:45–54.CrossRefGoogle Scholar
  12. 12.
    Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Cameron JA, Milner DJ, Lee JS, Cheng J, Fang NX, Jasiuk IM. Employing the biology of successful fracture repair to heal critical size bone defects. Curr Top Microbiol Immunol. 2013;367:113–32.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Arvidson K, Abdallah BM, Applegate LA, Baldini N, Cenni E, Gomez-Barrena E, Granchi D, Kassem M, Konttinen YT, Mustafa K, Pioletti DP, Sillat T, Finne-Wistrand A. Bone regeneration and stem cells. J Cell Mol Med. 2011;15:718–46.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kostenuik P, Mirza FM. Fracture healing physiology and the quest for therapies for delayed healing and nonunion. J Orthop Res. 2017;35:213–23.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Scammell BE, Roach HI. A new role for the chondrocyte in fracture repair: endochondral ossification includes direct bone formation by former chondrocytes. J Bone Miner Res. 1996;11:737–45.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Panetta NJ, Gupta DM, Longaker MT. Bone regeneration and repair. Curr Stem Cell Res Ther. 2010;5:122–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4:68–75.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Shi J, Chi S, Xue J, Yang J, Li F, Liu X. Emerging role and therapeutic implication of Wnt signaling pathways in autoimmune diseases. J Immunol Res. 2016;2016:9392132.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Liu H, Liu Q, Zhou X, Huang Y, Zhang Z. Genome editing of Wnt-1, a gene associated with segmentation, via CRISPR/Cas9 in the pine caterpillar moth, Dendrolimus punctatus. Front Physiol. 2016;17:666.Google Scholar
  21. 21.
    Houschyar KS, Momeni A, Pyles MN, Maan ZN, Whittam AJ, Siemers F. Wnt signaling induces epithelial differentiation during cutaneous wound healing. Organogenesis. 2015;11:95–104.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Verheyen EM, Gottardi CJ. Regulation of Wnt/beta-catenin signaling by protein kinases. Dev Dyn. 2010;239:34–44.PubMedCentralGoogle Scholar
  23. 23.
    Geetha-Loganathan P, Nimmagadda S, Scaal M. Wnt signaling in limb organogenesis. Organogenesis. 2008;4:109–15.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Habas R, Dawid IB. Dishevelled and Wnt signaling: is the nucleus the final frontier? J Biol. 2005;4:2.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wu M, Herman MAA. A novel noncanonical Wnt pathway is involved in the regulation of the asymmetric B cell division in C. elegans. Dev Biol. 2006;293:316–29.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Huelsken J, Behrens J. The Wnt signalling pathway. J Cell Sci. 2002;115:3977–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Lu D, Carson DA. Spiperone enhances intracellular calcium level and inhibits the Wnt signaling pathway. BMC Pharmacol. 2009;9:13.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kestler HA, Kuhl M. From individual Wnt pathways towards a Wnt signalling network. Philos Trans R Soc Lond B Biol Sci. 2008;363:1333–47.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461–73.CrossRefGoogle Scholar
  30. 30.
    Choi HJ, Park H, Lee HW, Kwon YG. The Wnt pathway and the roles for its antagonists, DKKS, in angiogenesis. IUBMB Life. 2012;64:724–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Enzo MV, Rastrelli M, Rossi CR, Hladnik U, Segat D. The Wnt/beta-catenin pathway in human fibrotic-like diseases and its eligibility as a therapeutic target. Mol Cell Ther. 2015;3:1.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80.CrossRefGoogle Scholar
  33. 33.
    Cong F, Schweizer L, Chamorro M, Varmus H. Requirement for a nuclear function of beta-catenin in Wnt signaling. Mol Cell Biol. 2003;23:8462–70.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Tarapore RS, Siddiqui IA, Mukhtar H. Modulation of Wnt/beta-catenin signaling pathway by bioactive food components. Carcinogenesis. 2012;33:483–91.PubMedCrossRefGoogle Scholar
  35. 35.
    Stamos JL, Weis WI. The beta-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013;5:a007898.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gao C, Xiao G, Hu J. Regulation of Wnt/beta-catenin signaling by posttranslational modifications. Cell Biosci. 2014;4:3.CrossRefGoogle Scholar
  37. 37.
    Mohammed MK, et al. Wnt/beta-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis. 2016;3:11–40.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Tauriello DV, Maurice MM. The various roles of ubiquitin in Wnt pathway regulation. Cell Cycle. 2010;9:3700–9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Sethi JK, Vidal-Puig A. Wnt signalling and the control of cellular metabolism. Biochem J. 2010;427:1–17.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Voronkov A, Krauss S. Wnt/beta-catenin signaling and small molecule inhibitors. Curr Pharm Des. 2013;19:634–64.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Quarto N, Wan DC, Kwan MD, Panetta NJ, Li S, Longaker MT. Origin matters: differences in embryonic tissue origin and Wnt signaling determine the osteogenic potential and healing capacity of frontal and parietal calvarial bones. J Bone Miner Res. 2010;25:1680–94.Google Scholar
  42. 42.
    MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harb Perspect Biol. 2012;4:a007880.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gomez-Orte E, Saenz-Narciso B, Moreno S, Cabello J. Multiple functions of the noncanonical Wnt pathway. Trends Genet. 2013;29:545–53.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 2000;16:279–83.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    De A. Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin (Shanghai). 2011;43:745–56.CrossRefGoogle Scholar
  46. 46.
    Garcia-Castro J, Trigueros C, Madrenas J, Pérez-Simón JA, Rodriguez R, Menendez P. Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. J Cell Mol Med. 2008;12:2552–65.PubMedCentralCrossRefGoogle Scholar
  47. 47.
    Patel DM, Shah J, Srivastava AS. Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells Int. 2013;2013:496218.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Undale AH, Westendorf JJ, Yaszemski MJ, Khosla S. Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin Proc. 2009;84:893–902.PubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, Cui J, Li R, Zhang W, Kong Y, Zhang J, Shui W, Lamplot J, Rogers MR, Zhao C, Wang N, Rajan P, Tomal J, Statz J, Wu N, Luu HH, Haydon RC, He TC. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis. 2013;5:13–31.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Regard JB, Zhong Z, Williams BO, Yang Y. Wnt signaling in bone development and disease: making stronger bone with Wnts. Cold Spring Harb Perspect Biol. 2012;4:a007997.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006;116:1202–9.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Minear S, Leucht P, Jiang J, Liu B, Zeng A, Fuerer C, Nusse R, Helms JA. Wnt proteins promote bone regeneration. Sci Transl Med. 2010;2:29ra30.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells—current trends and future prospective. Biosci Rep. 2015;35:e00191.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Case N, Rubin J. Beta-catenin—a supporting role in the skeleton. J Cell Biochem. 2010;110:545–53.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kang S, Bennett CN, Gerin I, Rapp LA, Hankenson KD, Macdougald OA. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J Biol Chem. 2007;282:14515–24.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Takada I, Mihara M, Suzawa M, Ohtake F, Kobayashi S, Igarashi M, Youn MY, Takeyama K, Nakamura T, Mezaki Y, Takezawa S, Yogiashi Y, Kitagawa H, Yamada G, et al. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation. Nat Cell Biol. 2007;9:1273–85.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L, Li R, Shui W, Zhang H, Kim SH, Zhang W, Zhang J, Kong Y, Denduluri S, Rogers MR, et al. BMP signaling in mesenchymal stem cell differentiation and bone formation J Biomed Sci Eng. 2013;6:32–52.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Tang N, Song WX, Luo J, Luo X, Chen J, Sharff KA, Bi Y, He BC, Huang JY, Zhu GH, Su YX, Jiang W, et al. BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J Cell Mol Med. 2009;13:2448–64.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Yang K, Wang X, Zhang H, Wang Z, Nan G, Li Y, Zhang F, Mohammed MK, Haydon RC, Luu HH, Bi Y, He TC. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: implications in targeted cancer therapies. Lab Invest. 2016;96:116–36.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem. 2011;112:3491–501.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Zhang M, Yan Y, Lim YB, Tang D, Xie R, Chen A, Tai P, Harris SE, Xing L, Qin YX, Chen D. BMP-2 modulates beta-catenin signaling through stimulation of Lrp5 expression and inhibition of beta-TrCP expression in osteoblasts. J Cell Biochem. 2009;108:896–905.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Yavropoulou MP, Yovos JG. The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones (Athens). 2007;6:279–94.CrossRefGoogle Scholar
  63. 63.
    Semenov MV, He X. LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J Biol Chem. 2006;281:38276–84.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Johnson ML. LRP5 and bone mass regulation: where are we now? Bonekey Rep. 2012;1:1.1.CrossRefGoogle Scholar
  65. 65.
    Zheng HF, Tobias JH, Duncan E, Evans DM, Eriksson J, Paternoster L, Yerges-Armstrong LM, Lehtimäki T, Bergström U, Kähönen M, Leo PJ, et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet. 2012;8:e1002745.PubMedCentralCrossRefGoogle Scholar
  66. 66.
    Shahi M, Peymani A, Sahmani M. Regulation of bone metabolism. Rep Biochem Mol Biol. 2017;5:73–82.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Huang W, Yang S, Shao J, Li YP. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci. 2007;12:3068–92.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Xu H, Duan J, Ning D, Li J, Liu R, Yang R, Jiang JX, Shang P. Role of Wnt signaling in fracture healing. BMB Rep. 2014;47:666–72.PubMedCentralCrossRefGoogle Scholar
  69. 69.
    Bao Q, Chen S, Qin H, Feng J, Liu H, Liu D, Li A, Shen Y, Zhao Y, Li J, Zong Z. An appropriate Wnt/beta-catenin expression level during the remodeling phase is required for improved bone fracture healing in mice. Sci Rep. 2017;7:695.CrossRefGoogle Scholar
  70. 70.
    Komatsu DE, Mary MN, Schroeder RJ, Robling AG, Turner CH, Warden SJ. Modulation of Wnt signaling influences fracture repair. J Orthop Res. 2010;28:928–36.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Zhong Z, Ethen NJ, Williams BO. WNT signaling in bone development and homeostasis. Wiley Interdiscip Rev Dev Biol. 2014;3:489–500.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-beta/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 2015;3:15005.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Zhang W, Xue D, Yin H, Wang S, Li C, Chen E, Hu D, Tao Y, Yu J, Zheng Q, Gao X, Pan Z. Overexpression of HSPA1A enhances the osteogenic differentiation of bone marrow mesenchymal stem cells via activation of the Wnt/beta-catenin signaling pathway. Sci Rep. 2016;6:27622.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Pinzone JJ, Hall BM, Thudi NK, Vonau M, Qiang YW, Rosol TJ, Shaughnessy JD Jr. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood. 2009;113:517–25.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Guo X, Wang XF. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 2009;19:71–88.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8:272–88.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo). 2013;2013:684736.Google Scholar
  78. 78.
    Gao Y, Huang E, Zhang H, Wang J, Wu N, Chen X, Wang N, Wen S, Nan G, Deng F, Liao Z, Wu D, Zhang B, Zhang J, Haydon RC, Luu HH, Shi LL, He TC. Crosstalk between Wnt/beta-catenin and estrogen receptor signaling synergistically promotes osteogenic differentiation of mesenchymal progenitor cells. PLoS One. 2013;8:e82436.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hiyama A, Yokoyama K, Nukaga T, Sakai D, Mochida J. A complex interaction between Wnt signaling and TNF-alpha in nucleus pulposus cells. Arthritis Res Ther. 2013;15:R189.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Baum R, Gravallese EM. Impact of inflammation on the osteoblast in rheumatic diseases. Curr Osteoporos Rep. 2014;12:9–16.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Wehmeyer C, Pap T, Buckley CD, Naylor AJ. The role of stromal cells in inflammatory bone loss. Clin Exp Immunol. 2017;189:1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Rosen EY, Wexler EM, Versano R, Coppola G, Gao F, Winden KD, Oldham MC, Martens LH, Zhou P, Farese RV Jr, Geschwind DH. Functional genomic analyses identify pathways dysregulated by progranulin deficiency, implicating Wnt signaling. Neuron. 2011;71:1030–42.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Zhao YP, Tian QY, Frenkel S, Liu CJ. The promotion of bone healing by progranulin, a downstream molecule of BMP-2, through interacting with TNF/TNFR signaling. Biomaterials. 2013;34:6412–21.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Wang C, Liao H, Cao Z. Role of Osterix and MicroRNAs in bone formation and tooth development. Med Sci Monit. 2016;22:2934–42.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kang H, Hata A. The role of microRNAs in cell fate determination of mesenchymal stem cells: balancing adipogenesis and osteogenesis. BMB Rep. 2015;48:319–23.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Zhang Y, Xie RL, Croce CM, Stein JL, Lian JB, van Wijnen AJ, Stein GS. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci U S A. 2011;108:9863–8.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Song JL, Nigam P, Tektas SS, Selva E. microRNA regulation of Wnt signaling pathways in development and disease. Cell Signal. 2015;27:1380–91.PubMedCentralCrossRefGoogle Scholar
  88. 88.
    Guo D, Li Q, Lv Q, Wei Q, Cao S, Gu J. MiR-27a targets sFRP1 in hFOB cells to regulate proliferation, apoptosis and differentiation. PLoS One. 2014;9:e91354.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J, Chen J. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res. 2011;26:1953–63.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Buser D, Dula K, Lang NP, Nyman S. Long-term stability of osseointegrated implants in bone regenerated with the membrane technique. 5-year results of a prospective study with 12 implants. Clin Oral Implants Res. 1996;7:175–83.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for bone regenerative engineering. Adv Healthc Mater. 2015;4:1268–85.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9:18.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Hunter JD 3rd, Cannon JA. Biomaterials: so many choices, so little time. What are the differences? Clin Colon Rectal Surg. 2014;27:134–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8:114–24.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Di Marco M, Shamsuddin S, Razak KA, Aziz AA, Devaux C, Borghi E, Levy L, Sadun C. Overview of the main methods used to combine proteins with nanosystems: absorption, bioconjugation, and encapsulation. Int J Nanomedicine. 2010;5:37–49.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Khosrow Siamak Houschyar
    • 1
    • 2
  • Dominik Duscher
    • 9
  • Zeshaan N. Maan
    • 3
  • Malcolm P. Chelliah
    • 3
  • Mimi R. Borrelli
    • 3
  • Kamran Harati
    • 1
  • Christoph Wallner
    • 1
  • Susanne Rein
    • 4
  • Christian Tapking
    • 5
    • 6
  • Georg Reumuth
    • 7
  • Gerrit Grieb
    • 8
  • Frank Siemers
    • 8
  • Marcus Lehnhardt
    • 1
  • Björn Behr
    • 1
  1. 1.Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University BochumBochumGermany
  2. 2.Burn Unit, Department for Plastic and Hand SurgeryTrauma Center Bergmannstrost HalleHalle (Saale)Germany
  3. 3.Division of Plastic and Reconstructive Surgery, Department of SurgeryStanford School of MedicineStanfordUSA
  4. 4.Department of Plastic and Hand SurgeryBurn Center-Clinic St. GeorgLeipzigGermany
  5. 5.Department of SurgeryShriners Hospital for Children-Galveston, University of Texas Medical BranchGalvestonUSA
  6. 6.Department of Hand, Plastic and Reconstructive SurgeryBurn Trauma Center, BG Trauma Center Ludwigshafen, University of HeidelbergHeidelbergGermany
  7. 7.Department of Plastic and Hand SurgeryBurn Unit, Trauma Center Bergmannstrost HalleHalleGermany
  8. 8.Department of Plastic Surgery and Hand SurgeryGemeinschaftskrankenhaus Havelhoehe, Teaching Hospital of the Charité BerlinBerlinGermany
  9. 9.Department for Plastic Surgery and Hand SurgeryDivision of Experimental Plastic Surgery, Technical University of MunichMunichGermany

Personalised recommendations