Advertisement

Sophisticated Biocomposite Scaffolds from Renewable Biomaterials for Bone Tissue Engineering

  • Yavuz Emre Arslan
  • Eren Ozudogru
  • Tugba Sezgin Arslan
  • Burak Derkus
  • Emel Emregul
  • Kaan C. Emregul
Chapter

Abstract

Tissue engineering, which has gained importance since the early 1990s and has not reached the desired level yet, is one of the most studied biological fields today. One of the reasons why the tissue engineering could not efficiently be practiced in the human clinics is the limitation of non-immunogenic, biocompatible, cost-effective, and stable materials. In this chapter, authors have focused on the availability of biomaterials, which are potentially usable in bone tissue engineering, from various waste or biological structures. Collagen, keratin, and hydroxyapatite are the main theme of this chapter.

Keywords

Renewable biomaterials Jellyfish collagen Human hair keratin Bone tissue engineering Translational medicine 

References

  1. 1.
    Black CRM, Goriainov V, Gibbs D, Kanczler J, Tare RS, Oreffo ROC. Bone tissue engineering. Curr Mol Biol Rep. 2015;1:132–40.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Healy K, Guldberg RE. Bone tissue engineering. J Musculoskelet Neuronal Interact. 2007;7:328–30.PubMedGoogle Scholar
  3. 3.
    Siddappa R, Licht R, Blitterswijk C, Boer J. Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. Orthop Res Soc. 2007;28:1029–41.CrossRefGoogle Scholar
  4. 4.
    Chen Q, Roether JA, Boccaccini A. Tissue engineering scaffolds from bioactive glass and composite materials. In: Ashammakhi N, Reis R, Chiellini F, editors. Topics in tissue engineering. Chapter 6, vol. 4. Oulu: Oulu University; 2008. p. 1–27. www.oulu.fi/spareparts/ebook_topics_in_t_e_vol4/abstracts/q_chen.pdf Accessed 8 Dec 2017.Google Scholar
  5. 5.
    Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C. 2015;47:237–47.CrossRefGoogle Scholar
  6. 6.
    Messina PV, D’Elía NL, Benedini LA. Bone tissue regenerative medicine via bioactive nanomaterials. In: Ficai D, Grumezescu A, editors. Nanostructures for novel therapy. Amsterdam: Elsevier Inc.; 2017. p. 769–92.CrossRefGoogle Scholar
  7. 7.
    Venkatesan J, Lowe B, Kim SK. Bone tissue engineering using functional marine biomaterials. In: Kim SW, editor. Functional marine biomaterials. Cambridge: Woodhead Publishing; 2015. p. 53–61.CrossRefGoogle Scholar
  8. 8.
    Bhattacharjee P, Kundu B, Naskar D, Kim HW, Maiti TK, Bhattacharya D, Kundu SC. Silk scaffolds in bone tissue engineering: an overview. Acta Biomater. 2017;63:1–17.PubMedCrossRefGoogle Scholar
  9. 9.
    Baldwin J, Henkel J, Hutmacher DW. Engineering the organ bone. In: Ducheyne P, editor. Comprehensive Biomaterials II. Philadelphia, PA: Elsevier; 2017. p. 54–74.CrossRefGoogle Scholar
  10. 10.
    Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20:92–102.PubMedCrossRefGoogle Scholar
  11. 11.
    Arvidson K, Abdallah BM, Applegate LA, Baldini N, Cenni E, Gomez-Barrena E, Granchi D, Kassem M, Konttinen YT, Mustafa K, Pioletti DP, Sillat T, Finne-Wistrand A. Bone regeneration and stem cells. J Cell Mol Med. 2011;15:718–46.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11:18–25.CrossRefGoogle Scholar
  13. 13.
    Du C, Jin J, Li Y, Kong X, Wei K, Yao J. Novel silk fibroin/hydroxyapatite composite films: structure and properties. Mater Sci Eng C. 2009;29:62–8.CrossRefGoogle Scholar
  14. 14.
    Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol. 2010;47(1):1–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Venugopal J, Prabhakaran MP, Zhang Y, Low S, Choon AT, Ramakrishna S. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philos Trans A Math Phys Eng Sci. 2010;368(1917):2065–81.PubMedCrossRefGoogle Scholar
  16. 16.
    Farokhi M, Mottaghitalab F, Samani S, Shokrgozar MA, Kundu SC, Reis RL, Fatahi Y, Kaplan DL. Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol Adv. 2018;36(1):68–91.PubMedCrossRefGoogle Scholar
  17. 17.
    Arslan YE, Sezgin Arslan T, Derkus B, Emregul E, Emregul KC. Fabrication of human hair keratin/jellyfish collagen/eggshell-derived hydroxyapatite osteoinductive biocomposite scaffolds for bone tissue engineering: From waste to regenerative medicine products. Colloids Surf B Biointerfaces. 2017;154:160–70.PubMedCrossRefGoogle Scholar
  18. 18.
    Romagnoli C, Brandi ML. Adipose mesenchymal stem cells in the field of bone tissue engineering. World J Stem Cells. 2014;6:144–52.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl. 2017;78:1246–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Batioglu-Karaaltin A, Karaaltin MV, Ovali E, Yigit O, Kongur M, Inan O, Bozkurt E, Cansiz H. In vivo tissue-engineered allogenic trachea transplantation in rabbits: a preliminary report. Stem Cell Rev Rep. 2015;11:347–56.PubMedCrossRefGoogle Scholar
  21. 21.
    Furth ME, Atala A, Van Dyke ME. Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials. 2007;28:5068–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17:467–79.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Arslan YE, Hiz MM, Sezgin Arslan T. The use of decellularized animal tissues in regenerative therapies. Kafkas Univ Vet Fak Derg. 2015;21:139–45.Google Scholar
  24. 24.
    Erten E, Arslan Sezgin T, Derkus B, Arslan YE. Detergent-free decellularization of bovine costal cartilage for chondrogenic differentiation of human adipose mesenchymal stem cells in vitro. RSC Adv. 2016;6:94236–46.CrossRefGoogle Scholar
  25. 25.
    Tan L, Yu X, Wan P, Yang K. Biodegradable materials for bone repairs: a review. J Mater Sci Technol. 2013;29:503–13.CrossRefGoogle Scholar
  26. 26.
    Burnett LR, Rahmany MB, Richter JR, Aboushwareb TA, Eberli D, Ward CL, Orlando G, Hantgan RR, Van Dyke ME. Hemostatic properties and the role of cell receptor recognition in human hair keratin protein hydrogels. Biomaterials. 2013;34:2632–40.PubMedCrossRefGoogle Scholar
  27. 27.
    Brien FJO. Biomaterials and scaffolds for tissue engineering. Mater Today. 2011;14:2345–7.CrossRefGoogle Scholar
  28. 28.
    Song E, Yeon Kim S, Chun T, Byun HJ, Lee YM. Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials. 2006;27:2951–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Kim BS, Park IK, Hoshiba T, Jiang HL, Choi YJ, Akaike T, Cho CS. Design of artificial extracellular matrices for tissue engineering. Prog Polym Sci. 2011;36:238–68.CrossRefGoogle Scholar
  30. 30.
    Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm. 2001;221:1–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Derkus B, Arslan YE, Emregul KC, Emregul E. Enhancement of aptamer immobilization using egg shell-derived nano-sized spherical hydroxyapatite for thrombin detection in neuroclinic. Talanta. 2016;158:100–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Tachibana A, Kaneko S, Tanabe T, Yamauchi K. Rapid fabrication of keratin-hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation. Biomaterials. 2005;26:297–302.PubMedCrossRefGoogle Scholar
  33. 33.
    Takeuchi A, Ohtsuki C, Miyazaki T, Tanaka H, Yamazaki M, Tanihara M. Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid. J Biomed Mater Res A. 2003;65:283–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Oliveira AL, Malafaya PB, Reis RL. Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structures. Biomaterials. 2003;24:2575–84.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ren L, Tsuru K, Hayakawa S, Osaka A. Novel approach to fabricate porous gelatin-siloxane hybrids for bone tissue engineering. Biomaterials. 2002;23:4765–73.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Tian B, Chen W, Dong Y, Marymont JV, Lei Y, Ke Q, Guo Y, Zhu Z. Silver nanoparticle-loaded hydroxyapatite coating: structure, antibacterial properties, and capacity for osteogenic induction in vitro. RSC Adv. 2016;6:8549–62.CrossRefGoogle Scholar
  37. 37.
    Sanosh KP, Chu MC, Balakrishnan A, Kim TN, Cho SJ. Utilization of biowaste eggshells to synthesize nanocrystalline hydroxyapatite powders. Mater Lett. 2009;63:2100–2.CrossRefGoogle Scholar
  38. 38.
    Rocha JHG, Lemos AF, Agathopoulos S, Valério P, Kannan S, Oktar FN, Ferreira JMF. Scaffolds for bone restoration from cuttlefish. Bone. 2005;37:850–7.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Komalakrishna H, Shine Jyoth T, Kundu B, Mandal S. Low temperature development of nano-hydroxyapatite from austromegabalanus psittacus, star fish and sea urchin. Mater Today Proc. 2017;4:11933–8.CrossRefGoogle Scholar
  40. 40.
    Herliansyah MK, Hamdi M, Ide-Ektessabi A, Wildan MW, Toque JA. The influence of sintering temperature on the properties of compacted bovine hydroxyapatite. Mater Sci Eng C. 2009;29:1674–80.CrossRefGoogle Scholar
  41. 41.
    Murugan R, Ramakrishna S. Porous bovine hydroxyapatite for drug delivery. J Appl Biomater Biomech. 2005;3:93–7.PubMedGoogle Scholar
  42. 42.
    Rivera EM, Araiza M, Brostow W, Castaño VM, Dı́az-Estrada J, Hernández R, Rodrı́guez JR. Synthesis of hydroxyapatite from eggshells. Mater Lett. 1999;41:128–34.CrossRefGoogle Scholar
  43. 43.
    Dupoirieux L. Ostrich eggshell as a bone substitute: a preliminary report of its biological behaviour in animals - a possibility in facial reconstructive surgery. Br J Oral Maxillofac Surg. 1999;37:467–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Reichl S, Borrelli M, Geerling G. Keratin films for ocular surface reconstruction. Biomaterials. 2011;32:3375–86.PubMedCrossRefGoogle Scholar
  45. 45.
    Saravanan S, Sameera DK, Moorthi A, Selvamurugan N. Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering. Int J Biol Macromol. 2013;62:481–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Fraser RD, Parry DA. Molecular packing in the feather keratin filament. J Struct Biol. 2008;162:1–13.PubMedCrossRefGoogle Scholar
  47. 47.
    Tachibana A, Furuta Y, Takeshima H, Tanabe T, Yamauchi K. Fabrication of wool keratin sponge scaffolds for long-term cell cultivation. J Biotechnol. 2002;93:165–70.PubMedCrossRefGoogle Scholar
  48. 48.
    Holkar CR, Jain SS, Jadhav AJ, Pinjari DV. Valorization of keratin based waste. Process Saf Environ Prot. 2017;115:85–98. www.sciencedirect.com/science/article/pii/S0957582017303002 Accessed 8 Dec 2017CrossRefGoogle Scholar
  49. 49.
    Fujii T, Murai S, Ohkawa K, Hirai T. Effects of human hair and nail proteins and their films on rat mast cells. J Mater Sci Mater Med. 2008;19:2335–42.PubMedCrossRefGoogle Scholar
  50. 50.
    Wrześniewska-Tosik K, Adamiec J. Biocomposites with a content of keratin from chicken feathers. Fibres Text East Eur. 2007;15:106–12.Google Scholar
  51. 51.
    Verma V, Verma P, Ray P, Ray AR. Preparation of scaffolds from human hair proteins for tissue-engineering applications. Biomed Mater. 2008;3:25007.CrossRefGoogle Scholar
  52. 52.
    Lee H, Noh K, Lee SC, Kwon IK, Han DW, Lee LS, Hwang YS. Human hair keratin and its-based biomaterials for biomedical applications. Tissue Eng Regen Med. 2014;11:255–65.CrossRefGoogle Scholar
  53. 53.
    Ramshaw JA. Biomedical applications of collagens. J Biomed Mater Res Part B Appl Biomater. 2016;104:665–75.PubMedCrossRefGoogle Scholar
  54. 54.
    Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci. 1989;86:933–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Maeda M, Tani S, Sano A, Fujioka K. Microstructure and release characteristics of the minipellet, a collagen-based drug delivery system for controlled release of protein drugs. J Control Release. 1999;62:313–24.PubMedCrossRefGoogle Scholar
  56. 56.
    Hoyer B, Bernhardt A, Lode A, Heinemann S, Sewing J, Klinger M, Notbohm H, Gelinsky M. Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomater. 2014;10:883–92.PubMedCrossRefGoogle Scholar
  57. 57.
    Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011;25:1813–27.CrossRefGoogle Scholar
  58. 58.
    Heinemann S, Ehrlich H, Douglas T, Heinemann C, Worch H, Schatton W, Hanke T. Ultrastructural studies on the collagen of the marine sponge Chondrosia reniformis nardo. Biomacromolecules. 2007;8:3452–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang L, An X, Xin Z, Zhao L, Hu Q. Isolation and characterization of collagen from the skin of deep-sea redfish (Sebastes mentella). J Food Sci E Food Eng Phys Prop. 2007;72:450–5.Google Scholar
  60. 60.
    Nomura Y, Yamano M, Hayakawa C, Ishii Y, Shirai K. Structural property and in vitro self-assembly of shark type i collagen. Biosci Biotechnol Biochem. 1997;61:1919–23.PubMedCrossRefGoogle Scholar
  61. 61.
    Yunoki S, Suzuki T, Takai M. Stabilization of low denaturation temperature collagen from fish by physical cross-linking methods. J Biosci Bioeng. 2003;96:575–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Addad S, Exposito JY, Faye C, Ricard-Blum S, Lethias C. Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar Drugs. 2011;9:967–83.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Nagai T, Ogawa T, Nakamura T, Ito T, Nakagawa H, Fujiki K, Nakao M, Yano T. Collagen of edible jellyfish exumbrella. J Sci Food Agric. 1999;79:855–8.CrossRefGoogle Scholar
  64. 64.
    Nagai T, Worawattanamateekul W, Suzuki N, Nakamura T, Ito T, Fujiki K, Nakao M, Yano T. Isolation and characterization of collagen from rhizostomous jellyfish (Rhopilema asamushi). Food Chem. 2000;70:205–8.CrossRefGoogle Scholar
  65. 65.
    Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat. 2009;214:516–59.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Nakamura A, Arimoto M, Takeuchi K, Fujii T. A rapid extraction procedure of human hair proteins and identification of phosphorylated species. Biol Pharm Bull. 2002;25:569–72.PubMedCrossRefGoogle Scholar
  67. 67.
    Lusiana, Reichl S, Müller-Goymann CC. Keratin film made of human hair as a nail plate model for studying drug permeation. Eur J Pharm Biopharm. 2011;78:432–40.PubMedCrossRefGoogle Scholar
  68. 68.
    Sezgin Arslan T. Keratin-based scaffold fabrication and evaluation of the effectiveness for tissue engineering applications. Canakkale: Mart University Meeting; 2017.Google Scholar
  69. 69.
    Chen S, Pujari-Palmer S, Rubino S, Westlund V, Ott M, Engqvist H, Xia W. Highly repeatable synthesis of nHA with high aspect ratio. Mater Lett. 2015;159:163–7.CrossRefGoogle Scholar
  70. 70.
    Gergely G, Wéber F, Lukács I, Tóth AL, Horváth ZE, Mihály J, Balázsi C. Preparation and characterization of hydroxyapatite from eggshell. Ceram Int. 2010;36:803–6.CrossRefGoogle Scholar
  71. 71.
    Prabakaran K, Rajeswari S. Spectroscopic investigations on the synthesis of nano-hydroxyapatite from calcined eggshell by hydrothermal method using cationic surfactant as template. Spectrochim Acta Part A Mol Biomol Spectrosc. 2009;74:1127–34.CrossRefGoogle Scholar
  72. 72.
    Zhang C, Yang J, Quan Z, Yang P. Hydroxyapatite nano-and microcrystals with multiform morphologies: Controllable synthesis and luminescence properties. Cryst Growth Des. 2009;9:2725–33.CrossRefGoogle Scholar
  73. 73.
    Lee JH, Kim YJ. Hydroxyapatite nanofibers fabricated through electrospinning and sol-gel process. Ceram Int. 2014;40:3361–9.CrossRefGoogle Scholar
  74. 74.
    Han Y, Li S, Wang X, Bauer I, Yin M. Sonochemical preparation of hydroxyapatite nanoparticles stabilized by glycosaminoglycans. Ultrason Sonochem. 2007;14:286–90.PubMedCrossRefGoogle Scholar
  75. 75.
    Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials (Basel). 2010;3:1863–87.CrossRefGoogle Scholar
  76. 76.
    Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–83.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Derkus B, Arslan YE, Bayrac AT, Kantarcioglu I, Emregul KC, Emregul E. Development of a novel aptasensor using jellyfish collagen as matrix and thrombin detection in blood samples obtained from patients with various neurodisease. Sensors Actuators B Chem. 2016;228:725–36.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yavuz Emre Arslan
    • 1
  • Eren Ozudogru
    • 1
  • Tugba Sezgin Arslan
    • 1
  • Burak Derkus
    • 2
  • Emel Emregul
    • 3
  • Kaan C. Emregul
    • 3
  1. 1.Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering FacultyCanakkale Onsekiz Mart UniversityCanakkaleTurkey
  2. 2.Department of Biomedical Engineering, Engineering FacultyEskisehir Osmangazi UniversityEskisehirTurkey
  3. 3.Bioelectrochemistry Laboratory, Department of ChemistryAnkara University, TandoganAnkaraTurkey

Personalised recommendations