Advertisement

Reconstruction of Post-Traumatic Maxillary Ridges Using a Radial Forearm Free Flap and Allogeneic Tissue-Engineered Bone Grafts

  • James C. MelvilleEmail author
  • Huy Q. Tran
  • Jonathan W. Shum
  • Ramzey Tursun
  • Robert E. Marx
Chapter

Abstract

Post-traumatic maxillary alveolar ridge defect presents a unique reconstructive challenge due to the lack of soft tissue volume that is required for traditional bone graft techniques. In addition, the curvilinear shape and relatively small-sized defect make osteocutaneous free flap such as the fibula an approach that is excessive and difficult for a good cosmetic outcome. With an effort to minimize surgical morbidities, reduce length of hospital stay, and maximize esthetic result, we turn to a novel technique that utilizes a combination of bone tissue engineering and radial forearm free flap for reconstruction of maxillary ridge defect. The concept of bone tissue engineering satisfies all three basic principles of osteoregeneration for a successful graft. The application of a versatile soft tissue free flap such as the radial forearm serves to maximize the volume gain and limit failure rate of the graft, as well as producing excellent esthetic outcome.

Keywords

Oral surgery Maxillofacial surgery Ridge augmentation Stem cells BMP BMAC Free flap Radial forearm flap Maxillary reconstruction Maxillofacial trauma Regeneration 

References

  1. 1.
    Hidalgo DA. Fibula free flap: a new method of mandible reconstruction. Plast Reconstr Surg. 1989;84(1):71–9.CrossRefGoogle Scholar
  2. 2.
    Hayden RE, Mullin DP, Patel AK. Reconstruction of the segmental mandibular defect: current state of the art. Curr Opin Otolaryngol Head Neck Surg. 2012;20(4):231–6.CrossRefGoogle Scholar
  3. 3.
    Wijbenga JG, Schepers RH, Werker PM, Witjes MJ, Dijkstra PU. A systematic review of functional outcome and quality of life following reconstruction of maxillofacial defects using vascularized free fibula flaps and dental rehabilitation reveals poor data quality. J Plast Reconstr Aesthet Surg. 2016;69(8):1024–36.CrossRefGoogle Scholar
  4. 4.
    Bodde EW, De Visser E, Duysens JE, Hartman EH. Donor-site morbidity after free vascularized autogenous fibular transfer: subjective and quantitative analyses. Plast Reconstr Surg. 2003;111(7):2237–42.CrossRefGoogle Scholar
  5. 5.
    Jensen SS, Terheyden H. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials. Int J Oral Maxillofac Implants. 2009;24(Suppl):218–36.PubMedGoogle Scholar
  6. 6.
    Matros E, Santamaria E, Cordeiro PG. Standardized templates for shaping the fibula free flap in mandible reconstruction. J Reconstr Microsurg. 2013;29(09):619–22.CrossRefGoogle Scholar
  7. 7.
    Song R, Song Y, Yu Y, Song Y. The upper arm free flap. Clin Plast Surg. 1982;9(1):27–35.PubMedGoogle Scholar
  8. 8.
    Moscoso JF, Urken ML. Radial forearm flaps. Otolaryngol Clin N Am. 1994;27(6):1119–40.Google Scholar
  9. 9.
    Jäger M, Herten M, Fochtmann U, Fischer J, Hernigou P, Zilkens C, Hendrich C, Krauspe R. Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J Orthop Res. 2011;29(2):173–80.CrossRefGoogle Scholar
  10. 10.
    Chahla J, Mannava S, Cinque ME, Geeslin AG, Codina D, LaPrade RF. Bone marrow aspirate concentrate harvesting and processing technique. Arthrosc Tech. 2017;6(2):e441–e5.CrossRefGoogle Scholar
  11. 11.
    Melville JC, Tursun R, Green JM, Marx RE. Reconstruction of a post-traumatic maxillary ridge using a radial forearm free flap and immediate tissue engineering (bone morphogenetic protein, bone marrow aspirate concentrate, and cortical-cancellous bone): case report. J Oral Maxillofac Surg. 2017;75(2):438.e1–6.CrossRefGoogle Scholar
  12. 12.
    Melville JC, Nassari NN, Hanna IA, Shum JW, Wong ME, Young S. Immediate transoral allogeneic bone grafting for large mandibular defects. Less morbidity, more bone. A paradigm in benign tumor mandibular reconstruction? J Oral Maxillofac Surg. 2017;75(4):828–38.CrossRefGoogle Scholar
  13. 13.
    Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–43.CrossRefGoogle Scholar
  14. 14.
    Marx RE, Stevens MR. Atlas of oral and extraoral bone harvesting. Hanover Park, IL: Quintessence Pub Co; 2010.Google Scholar
  15. 15.
    Fillingham Y, Jacobs J. Bone grafts and their substitutes. Bone Joint J. 2016;98(1 Suppl A):6–9.CrossRefGoogle Scholar
  16. 16.
    Marx RE, Harrell DB. Translational research: the CD34+ cell is crucial for large-volume bone regeneration from the milieu of bone marrow progenitor cells in craniomandibular reconstruction. Oral Craniofac Tissue Eng. 2012;2(4):263–71.CrossRefGoogle Scholar
  17. 17.
    Timmons MJ. The vascular basis of the radial forearm flap. Plast Reconstr Surg. 1986;77(1):80–92.CrossRefGoogle Scholar
  18. 18.
    Abu-Omar Y, Mussa S, Anastasiadis K, Steel S, Hands L, Taggart DP. Duplex ultrasonography predicts safety of radial artery harvest in the presence of an abnormal Allen test. Ann Thorac Surg. 2004;77(1):116–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • James C. Melville
    • 1
    • 2
    Email author
  • Huy Q. Tran
    • 1
    • 2
  • Jonathan W. Shum
    • 1
    • 2
  • Ramzey Tursun
    • 1
    • 2
    • 3
  • Robert E. Marx
    • 4
  1. 1.Department of Oral and Maxillofacial SurgeryUniversity of Texas Health Sciences Center at HoustonHoustonUSA
  2. 2.Department of Oral and Head and Neck Oncology and Microvascular Surgery, School of DentistryUniversity of Texas Health Sciences Center at HoustonHoustonUSA
  3. 3.University of Miami, Jackson Memorial HospitalMiamiUSA
  4. 4.University of Miami, Jackson Memorial HospitalMiamiUSA

Personalised recommendations