Implementing Tissue Engineering and Regenerative Medicine Solutions in Silicone Implants

  • Jae Chul Lee
  • Chan Yeong Heo


Approaches from regenerative medicine with respect to medical implants are somewhat novel concepts. The chapter is an introduction to the problems of interfacing biological tissue and silicone implants. The authors discuss problems associated with medical implants, suppression of cysteinyl leukotriene to reduce capsular contracture around silicone implants, problems associated with silicone implants and biointegration, overview of solid implant types, solid implant complications, complications seen in particular implant locations, principles and techniques for avoidance of postoperative complications, and preoperative antibiotic soak or impregnation. The objective of this chapter was to inform readers about the possibilities of learning from and adopting from concepts that are still in their nascent stages of development in tissue engineering and regenerative medicine to achieve total and permanent integration between silicone implants and surrounding biological tissues. In particular, we focus on an exploration of the application of silicone implants for reconstructive surgery and tissue engineering.


Biomaterial Capsular contracture Medical implant Silicone Tissue engineering 


  1. 1.
    Frasca D, Dahyot-Fizelier C, Mimoz O. Prevention of central venous catheter related infection in the intensivecare unit. Crit Care. 2010;14:212.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Nath SS, Roy D, Ansari F, Pawar ST. Anaesthetic complications in plastic surgery. Indian J Plast Surg. 2013;46:445–52.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Spear SL, Parikh PM, Goldstein JA. History of breast implants and the Food and Drug Administration. Clin Plast Surg. 2009;36:15–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Champaneria MC, Wong WW, Hil lME, Gupta SC. The evolution of breast reconstruction: a historical perspective. World J. 2012;36:730–42.CrossRefGoogle Scholar
  5. 5.
    Bondurant S, Ernster V, Herdman R, Institute of Medicine (U.S.). Committee on the safety of silicone breast implants, safety of silicone breast implants. Washington, DC: National Academy Press; 2000.Google Scholar
  6. 6.
    Takayanagi S. Complication of breast implant. J Jpn Soc Aesthet Plast Surg. 2006;28:180–5.Google Scholar
  7. 7.
    Gabriel SE, Woods JE, O’Fallon WM, Beard CM, Kurland LT, Melton LJ. Complications leading to surgery after breast implantation. N Engl J Med. 1997;336:677–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Momoh AO, Ahmed R, Kelley BP, Aliu O, Kidwell KM, Kozlow JH, Chung KC. A systematic review of complications of implant-based breast reconstruction with prereconstruction and postreconstruction radiotherapy. Ann Surg Oncol. 2014;21:118–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Roche W. Fibroblasts and fibrosis. Clin Exp Allergy. 1991;21:635–6.CrossRefGoogle Scholar
  10. 10.
    Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18:1028–40.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Handel N, Jensen JA, Black Q, Waisman JR, Silverstein MJ. The fate of breast implants: a critical analysis of complications and outcomes. Plast Reconstr Surg. 1995;97:1521–33.CrossRefGoogle Scholar
  12. 12.
    Jones KS. Effects of biomaterial-induced inflammation on fibrosis and rejection. Semin Immunol. 2008;20:130–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Anderson JM. Mechanisms of inflammation and infection with implanted devices. Cardiovasc Pathol. 1993;2:33–41.CrossRefGoogle Scholar
  14. 14.
    Peters-Golden M, Henderson WR Jr. Leukotrienes. N Engl J Med. 2007;357:1841–54.PubMedCrossRefGoogle Scholar
  15. 15.
    Busse W, Kraft M. Cysteinyl leukotrienes in allergic inflammation strategic target for therapy. Chest. 2005;127:1312–26.PubMedGoogle Scholar
  16. 16.
    Figueroa DJ, Breyer RM, Defoe SK, Kargman S, Daugherty BL, Waldburger K, Liu Q, Clements M, Zeng Z, O’Neill GP, Jones TR, Lynch KR, Austin CP, Evans JF. Expression of the cysteinyl leukotriene 1 receptor innormal human lung and peripheral blood leukocytes. Am J Respir Crit Care Med. 2001;163:226–33.PubMedCrossRefGoogle Scholar
  17. 17.
    Baud L, Perez J, Denis M, Ardaillou R. Modulation of fibroblast proliferation by sulfidopeptide leukotrienes: effect of indomethacin. J Immunol. 1987;138:1190–5.PubMedGoogle Scholar
  18. 18.
    Darby IA, Hewitson TD. Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol. 2007;257:143–79.PubMedCrossRefGoogle Scholar
  19. 19.
    AshcroftGS. Bidirectional regulation of macrophage function by TGF-b. Microbes Infect. 1999;1:1275–82.CrossRefGoogle Scholar
  20. 20.
    Wahl SM. Transforming growth factor beta (TGF-b) in inflammation: a cause and a cure. J Clin Immunol. 1992;12:61–74.PubMedCrossRefGoogle Scholar
  21. 21.
    Danielpour D, Dart LL, Flanders KC, Roberts AB, Sporn MB. Immunodetection and quantitation of the two forms of transforming growth factor-beta (TGF-b1 and TGF-b2) secreted by cells in culture. J Cell Physiol. 1989;138:79–86.PubMedCrossRefGoogle Scholar
  22. 22.
    Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol. 2007;127:526–37.PubMedCrossRefGoogle Scholar
  23. 23.
    Gasset AR, Dohlman CH. The tensile strength of corneal wounds. Arch Ophthalmol. 1968;79:595–602.PubMedCrossRefGoogle Scholar
  24. 24.
    Tintinger GR, Feldman C, Theron AJ, Anderson R. Montelukast: more than acysteinyl leukotriene receptor antagonist? Sci World J. 2010;10:2403–13.CrossRefGoogle Scholar
  25. 25.
    Jones T, Labelle M, Belley M, Champion E, Charette L, Evans J, Ford-Hutchinson A, Gauthier JY, Lord A, Masson P. Pharmacology of montelukast sodium (Singulair™), a potent and selective leukotriene D4 receptor antagonist. Can J Physiol Pharm. 1995;73:191–201.CrossRefGoogle Scholar
  26. 26.
    Eap R, Jacques E, Semlali A, Plante S, Chakir J. Cysteinyl leukotrienes regulate TGF-b 1 and collagen production by bronchial fibroblasts obtained from asthmatic subjects. Prostaglandins Leukot Essent Fatty Acids. 2012;86:127–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Asakura T, Ishii Y, Chibana K, Fukuda T. Leukotriene D4 stimulates collagen production from myofibroblasts transformed by TGF-b. J Allergy Clin Immunol. 2004;114:310–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Gizycki MJ, Adelroth E, Rogers AV, O’Byrne PM, Jeffery PK. Myofibroblast involvement in the allergen-induced late response in mild atopic asthma. Am J Respir Cell Mol Biol. 1997;16:664–73.PubMedCrossRefGoogle Scholar
  29. 29.
    Vignola AM, Mirabella F, Costanzo G, Di Giorgi R, Gjomarkaj M, Bellia V, Bonsignore G. Airway remodeling in asthma. Chest. 2003;123(3 Suppl):S417–S22.CrossRefGoogle Scholar
  30. 30.
    Smith TL, Sautter NB. Is montelukast indicated for treatment of chronic rhinosinusitis with polyposis? Laryngoscope. 2014;124:1735–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Steinke JW, Kennedy JL. Leukotriene inhibitors in sinusitis. Curr Infect Dis Rep. 2012;14:147–54.CrossRefGoogle Scholar
  32. 32.
    Kato J, Kohyama T, Okazaki H, Desaki M, Nagase T, Rennard SI, Takizawa H. Leukotriene D4 potentiates fibronectin-induced migration of human lung fibroblasts. Clin Immunol. 2005;117:177–81.PubMedCrossRefGoogle Scholar
  33. 33.
    Silva EN, Ribas-Filho JM, Czeczko NG, Pachnicki JP, Netto MR, Lipinski LC, Noronha L, Colman J, Zeni JO, Carvalho CA. Histological evaluation of capsules formed by silicon implants coated with polyurethane foam and with a textured surface in rats. Acta Cir Bras. 2016;31:774–82.PubMedCrossRefGoogle Scholar
  34. 34.
    Boudot C, Kühn M, Kühn-Kauffeldt M, Schein J. Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications. Mater Sci Eng C Mater Biol Appl. 2017;74:508–14.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhi Z, Su Y, Xi Y, Tian L, Xu M, Wang Q, Padidan S, Li P, Huang W. Dual-functional polyethylene glycol-b-polyhexanide surface coating with in vitro and in vivo antimicrobial and antifouling activities. ACS Appl Mater Interfaces. 2017;9:10383–97.PubMedCrossRefGoogle Scholar
  36. 36.
    Song HS, Park TH. Integration of biomolecules and nanomaterials: towards highly selective and sensitive biosensors. Biotechnol J. 2011;6(11):1310–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Stynes G, Kiroff GK, Morrison WA, Kirkland MA. Tissue compatibility of biomaterials: benefits and problems of skin biointegration. ANZ J Surg. 2008;78:654–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Siegel RA, Gu Y, Lei M, Baldi A, Nuxoll EE, Ziaie B. Hard and soft micro- and nanofabrication: an integrated approach to hydrogel based biosensing and drug delivery. J Control Release. 2009;141:303–13.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Moroni L, Elisseeff JH. Biomaterials engineered for integration. Mater Today. 2008;11:44–51.CrossRefGoogle Scholar
  40. 40.
    Brandt MG, Moore CC. Implants in facial skeletal augmentation. Curr Opin Otolaryngol Head Neck Surg. 2013;21:396–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Morera Serna E, Scola Pliego E, Mir Ulldemolins N, Martínez Morán A. Treatment of chin deformities. Acta Otorrinolaringol Esp. 2008;59:349–58.PubMedCrossRefGoogle Scholar
  42. 42.
    Desai SC, Moradzadeh A, Branham G. Anatomical evidence of microbial biofilms in an alloplastic nasal implant. Aesthet Plast Surg. 2013;37:468–71.CrossRefGoogle Scholar
  43. 43.
    Walker TJ, Toriumi DM. Analysis of facial implants for bacterial biofilm formation using scanning electron microscopy. JAMA Facial Plast Surg. 2016;18:299–304.PubMedCrossRefGoogle Scholar
  44. 44.
    Rubin JP, Yaremchuk MJ. Complications and toxicities of implantable biomaterials used in facial reconstructive and aesthetic surgery: a comprehensive review of the literature. Plast Reconstr Surg. 1997;100:1336–53.PubMedCrossRefGoogle Scholar
  45. 45.
    Whitaker LA. Aesthetic augmentation of the malar-midface structures. Plast Reconstr Surg. 1987;80:337–46.PubMedCrossRefGoogle Scholar
  46. 46.
    Tantawi D, Eberlin S, Calvert J. Midface implants: surgical and nonsurgical alternatives. Clin Plast Surg. 2015;42:123–7.PubMedCrossRefGoogle Scholar
  47. 47.
    de Moraes Ferreira AC, Muñoz XM, Okamoto R, Pellizer EP, Garcia IR Jr. Postoperative complications in craniomaxillofacial reconstruction with Medpor. J Craniofac Surg. 2016;27:425–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Ridwan-Pramana A, Wolff J, Raziei A, Ashton-James CE, Forouzanfar T. Porous polyethylene implants in facial reconstruction: outcome and complications. J Craniomaxillofac Surg. 2015;43:1330–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Villarreal PM, Monje F, Morillo AJ, Junquera LM, González C, Barbón JJ. Porous polyethylene implants in orbital floor reconstruction. Plast Reconstr Surg. 2002;109:877–85.PubMedCrossRefGoogle Scholar
  50. 50.
    Yaremchuk MJ. Facial skeletal reconstruction using porous polyethylene implants. Plast Reconstr Surg. 2003;111:1818–27.PubMedCrossRefGoogle Scholar
  51. 51.
    Berghaus A, Stelter K. Alloplastic materials in rhinoplasty. Curr Opin Otolaryngol Head Neck Surg. 2006;14:270–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Peled ZM, Warren AG, Johnston P, Yaremchuk MJ. The use of alloplastic materials in rhinoplasty surgery: a meta-analysis. Plast Reconstr Surg. 2008;121:85e–92e.PubMedCrossRefGoogle Scholar
  53. 53.
    Bracaglia R, Fortunato R, Gentileschi S. Secondary rhinoplasty. Aesthet Plast Surg. 2005;29:230–9.CrossRefGoogle Scholar
  54. 54.
    Yang P, Yang Q, Liu T, Zeng J, Bi B, Zhou Y, Guo Y, Chen L. A modified technique for expanded polytetrafluoroethylene shaping in chin augmentation: parallel groove carving technique. J Craniofac Surg. 2015;26:e146–e8.PubMedCrossRefGoogle Scholar
  55. 55.
    Gubisch W, Kotzur A. Our experience with silicone in rhinomentoplasty. Aesthet Plast Surg. 1998;22:237–44.CrossRefGoogle Scholar
  56. 56.
    Shadfar S, Farag A, Jarchow AM, Shockley WW. Safety and efficacy of expanded polytetrafluoroethylene implants in the surgical management of traumatic nasal deformity. JAMA Otolaryngol Head Neck Surg. 2015;141:710–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Niechajev I. Facial reconstruction using porous high-density polyethylene (Medpor): long-term results. Aesthet Plast Surg. 2012;36:917–27.CrossRefGoogle Scholar
  58. 58.
    Romo T III, Pearson JM. Nasal implants. Facial Plast Surg Clin North Am. 2008;16:123–32.PubMedCrossRefGoogle Scholar
  59. 59.
    Jin HR, Lee JY, Yeon JY, Rhee CS. A multicenter evaluation of the safety of Gore-Tex as an implant in Asian rhinoplasty. Am J Rhinol. 2006;20:615–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Godin MS, Waldman SR, Johnson CM Jr. Nasal augmentation using Gore-Tex. A 10-year experience. Arch Facial Plast Surg. 1999;1:118–21.PubMedCrossRefGoogle Scholar
  61. 61.
    Vuyk HD. Augmentation mentoplasty with solid silicone. Clin Otolaryngol Allied Sci. 1996;21:106–18.PubMedCrossRefGoogle Scholar
  62. 62.
    Zide BM, Pfeifer TM, Longaker MT. Chin surgery: I. Augmentation—the allures and the alerts. Plast Reconstr Surg. 1999;104:1843–53.PubMedCrossRefGoogle Scholar
  63. 63.
    Gross EJ, Hamilton MM, Ackermann K, Perkins SW. Mersilene mesh chin augmentation. A 14-year experience. Arch Facial Plast Surg. 1999;1:183–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Niamtu J III. Essentials of cheek and midface implants. J Oral Maxillofac Surg. 2010;68:1420–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Dong L, Hongyu X, Gao Z. Augmentation rhinoplasty with expanded polytetrafluoroethylene and prevention of complications. Arch Facial Plast Surg. 2010;12:246–51.PubMedCrossRefGoogle Scholar
  66. 66.
    Keefe MS, Keefe MA. An evaluation of the effectiveness of different techniques for intraoperative infiltration of antibiotics into alloplastic implants for use in facial reconstruction. Arch Facial Plast Surg. 2009;11:246–51.PubMedCrossRefGoogle Scholar
  67. 67.
    Rai A, Datarkar A, Arora A, Adwani DG. Utility of high density porous polyethylene implants in maxillofacial surgery. J Maxillofac Oral Surg. 2014;13:42–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Frodel JL, Lee S. The use of high-density polyethylene implants in facial deformities. Arch Otolaryngol Head Neck Surg. 1998;124:1219–23.PubMedCrossRefGoogle Scholar
  69. 69.
    Conrad K, Torgerson CS, Gillman GS. Applications of Gore-Tex implants in rhinoplasty reexamined after 17 years. Arch Facial Plast Surg. 2008;10:224–31.PubMedCrossRefGoogle Scholar
  70. 70.
    Yap EC, Abubakar SS, Olveda MB. Expanded polytetrafluoroethylene as dorsal augmentation material in rhinoplasty on Southeast Asian noses: three-year experience. Arch Facial Plast Surg. 2011;13:234–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Hubbard TJ. Alloplast as an alternative for dorsal augmentation. Semin Plast Surg. 2008;22:104–9.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Godin M, Costa L, Romo T, Truswell W, Wang T, Williams E. Gore-Tex chin implants: a review of 324 cases. Arch Facial Plast Surg. 2003;5:224–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Wong JK. Forehead augmentation with alloplastic implants. Facial Plast Surg Clin North Am. 2010;18:71–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Aynehchi BB, Burstein DH, Parhiscar A, Erlich MA. Vertical incision intraoral silicone chin augmentation. Otolaryngol Head Neck Surg. 2012;146:553–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jae Chul Lee
    • 1
  • Chan Yeong Heo
    • 1
    • 2
  1. 1.Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnam-siRepublic of Korea
  2. 2.Department of Plastic SurgeryCollege of Medicine, Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National UniversitySeoulRepublic of Korea

Personalised recommendations