Advertisement

Bone Tissue Engineering Challenges in Craniofacial Reconstructive Surgeries

  • Seyed Mohammad Zargar
  • Nima JamshidiEmail author
Chapter

Abstract

Craniofacial deformities can be categorized into congenital, traumatic, and cancerous ones. The author presents an overview of craniofacial defects, the available therapies, tissue engineering approach, scaffolds, polymers, ceramics, cells, and growth factors. Defects in the craniofacial region have to be considered as critical to be reconstructed. Tissue engineering seems to be a much better approach than others since it does not result in donor site morbidity and does not have the problem of the lack of suitable source in terms of quality and quantity. Although a lot of work and experimental studies have been carried out in this regard, there is a broad range of studies that remain and hoped to be done for finding the best cure for the problems.

Keywords

Embryonic stem cells Scaffolds Growth factors 

References

  1. 1.
    International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10)-WHO Version for 2016 http://apps.who.int/classifications/icd10/browse/2016/en#/Q75 Accessed 3/15/18.
  2. 2.
    Wolford LM. Craniofacial deformities. 2017 http://www.drlarrywolford.com/craniofacial-deformities. Accessed 3/16/18.
  3. 3.
    Sanan A, Haines S. Repairing holes in the head: a history of cranioplasty. Neurosurgery. 1997;40(3):588–603.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Elsalanty M, Genecov D. Bone grafts in craniofacial surgery. Craniomaxillofac Trauma Reconstr. 2009;2(03):125–34.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Smith BT, Shum J, Wong M, Mikos AG, Young S. Bone tissue engineering challenges in oral & maxillofacial surgery. Adv Exp Med Biol. 2015;881:57–78.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bauer T, Muschler G. Bone graft materials. Clin Orthopaed Relat Res. 2000;371:10–27.CrossRefGoogle Scholar
  7. 7.
    Khan S, Cammisa F, Sandhu H, Diwan A, Girardi F, Lane J. The biology of bone grafting. J Am Acad Orthopaed Surg. 2005;13(1):77–86.CrossRefGoogle Scholar
  8. 8.
    Laurencin CT, El-Amin SF. Xenotransplantation in orthopedic surgery. J Am Acad Orthop Surg. 2008;16:4–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Dell P, Burchardt H, Glowczewskie F. A roentgenographic, biomechanical, and histological evaluation of vascularized and non-vascularized segmental fibular canine autografts. J Bone Joint Surg. 1985;67(1):105–12.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Goldberg V, Stevenson S. Natural history of autografts and allografts. Clin Orthopaed Relat Res. 1987;(225):7–16.Google Scholar
  11. 11.
    Stevenson S, Li X, Davy D, Klein L, Goldberg V. Critical biological determinants of incorporation of non-vascularized cortical bone grafts. Quantification of a complex process and structure. J Bone Joint Surg. 1997;79(1):1–16.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim MR, Donoff RB. Critical analysis of mandibular reconstruction using AO reconstruction plates. J Oral Maxillofac Surg. 1992;50:1152–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Ilankovan V, Jackson I. Experience in the use of calvarial bone grafts in orbital reconstruction. Br J Oral Maxillofac Surg. 1992;30(2):92–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Demergasso F, Piazza M. Trapezius myocutaneous flap in reconstructive surgery for head and neck cancer: An original technique. Am J Surg. 1979;138(4):533–6.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Taggard D, Menezes A. Successful use of rib grafts for cranioplasty in children. Pediatr Neurosurg. 2001;34(3):149–55.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Schwartz M, Cohen J, Meltzer T, Wheatley M, McMenomey S, Horgan M, Kellogg J, Delashaw J. Use of the radial forearm microvascular free-flap graft for cranial base reconstruction. J Neurosurg. 1999;90(4):651–5.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    McClintock HG, Dingman RO. The repair of cranial defects with iliac bone. Surgery. 1951;30(6):955–63.PubMedPubMedCentralGoogle Scholar
  18. 18.
    David D, Tan E, Katsaros J, Sheen R. Mandibular reconstruction with vascularized iliac crest. Plast Reconstr Surg. 1988;82(5):792–801.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Hughes C, Revington P. The proximal tibia donor site in cleft alveolar bone grafting: experience of 75 consecutive cases. J Craniomaxillofac Surg. 2002;30(1):12–6.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Tessier P, Kawamoto H, Matthews D, Posnick J, Raulo Y, Tulasne J, Wolfe S. Taking tibial grafts in the diaphysis and upper epiphysis--tools and techniques: IV. A 650-case experience in maxillofacial and craniofacial surgery. Plast Reconstr Surg. 2005;116(5 Suppl):47S–53S.PubMedCrossRefGoogle Scholar
  21. 21.
    Tideman H. Fibula free flap: A new method of mandible reconstruction. Int J Oral Maxillofac Surg. 1990;19(1):61.Google Scholar
  22. 22.
    Schusterman M, Reece G, Miller M, Harris S, Urken M. The osteocutaneous free fibula flap. Plast Reconstr Surg. 1992;90(5):794–6.CrossRefGoogle Scholar
  23. 23.
    Ariyan S. The pectoralis major myocutaneous flap a versatile flap for reconstruction in the head and neck. Plast Reconstr Surg. 1979;63(1):73–81.PubMedCrossRefGoogle Scholar
  24. 24.
    Rossi G, Arrigoni G. Reimplantation of the mandibular condyle in cases of intraoral resection and reconstruction of the mandible. J Maxillofac Surg. 1979;7:1–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Schimming RM, Schmelzeisen R. Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg. 2004;62(6):724–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Payne K, Balasundaram I, Deb S, Di Silvio L, Fan K. Tissue engineering technology and its possible applications in oral and maxillofacial surgery. Br J Oral Maxillofac Surg. 2014;52(1):7–15.PubMedCrossRefGoogle Scholar
  27. 27.
    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(80):920–6.CrossRefGoogle Scholar
  28. 28.
    Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7(7):2769–81.PubMedCrossRefGoogle Scholar
  29. 29.
    Yang S, Leong K, Du Z, Chua C. The design of scaffolds for use in tissue engineering. Part I. traditional factors. Tissue Eng. 2001;7(6):679–89.PubMedCrossRefGoogle Scholar
  30. 30.
    Cohen S, Baño M, Cima L, Allcock H, Vacanti J, Vacanti C, Langer R. Design of synthetic polymeric structures for cell transplantation and tissue engineering. Clin Mater. 1993;13(1–4):3–10.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Whang K, Healy K, Elenz D, Nam E, Tsai D, Thomas C, Nuber G, Glorieux F, Travers R, Sprague S. Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng. 1999;5(1):35–51.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Liu X, Ma P. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 2004;32(3):477–86.PubMedCrossRefGoogle Scholar
  33. 33.
    Ferreira AM, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue engineering. Acta Biomater. 2012;7(6):3191–200.CrossRefGoogle Scholar
  34. 34.
    Gelse K. Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003;55(12):1531–46.PubMedCrossRefGoogle Scholar
  35. 35.
    Brodsky B, Eikenberry EF. Characterization of fibrous forms of collagen. In: Leon W, Cunningham DWF, editors. Methods in enzymology. NewYork: Academic Press; 1982. p. 127–74.Google Scholar
  36. 36.
    Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers. 2008;89(5):338–44.PubMedCrossRefGoogle Scholar
  37. 37.
    Miyata T, Taira T, Noishiki Y. Collagen engineering for biomaterial use. Clin Mater. 1992;9(3–4):139–48.PubMedCrossRefGoogle Scholar
  38. 38.
    Solchaga L, Yoo J, Lundberg M, Dennis J, Huibregtse B, Goldberg V, Caplan A. Hyaluronan-based polymers in the treatment of osteochondral defects. J Orthopaed Res. 2000;18(5):773–80.CrossRefGoogle Scholar
  39. 39.
    Di Martino A, Sittinger M, Risbud M. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26(30):5983–90.CrossRefGoogle Scholar
  40. 40.
    Abukawa H, Shin M, Williams W, Vacanti J, Kaban L, Troulis M. Reconstruction of mandibular defects with autologous tissue-engineered bone. J Oral Maxillofac Surg. 2004;62(5):601–6.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ren T, Ren J, Jia X, Pan K. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds. J Biomed Mater Res Part A. 2005;74A(4):562–9.CrossRefGoogle Scholar
  42. 42.
    Rai B, Ho K, Lei Y, Si-Hoe K, Jeremy Teo C, Yacob K, Chen F, Ng F, Teoh S. Polycaprolactone-20% tricalcium phosphate scaffolds in combination with platelet-rich plasma for the treatment of critical-sized defects of the mandible: A Pilot Study. J Oral Maxillofac Surg. 2007;65(11):2195–205.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Schuckert K, Jopp S, Teoh S. Mandibular defect reconstruction using three-dimensional polycaprolactone scaffold in combination with platelet-rich plasma and recombinant human bone morphogenetic protein-2: de novosynthesis of bone in a single case. Tissue Eng Part A. 2009;15(3):493–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Schliephake H, Weich H, Dullin C, Gruber R, Frahse S. Mandibular bone repair by implantation of rhBMP-2 in a slow release carrier of polylactic acid—an experimental study in rats. Biomaterials. 2008;29(1):103–10.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Holmes RE. Osteoconduction in hydroxyapatite-based materials. In: Brighton CT, Friedlaender G, Lane JM, editors. Bone formation and repair. Rosemont: American Academy of Orthopedic Surgeons; 1994. p. 355–65.Google Scholar
  46. 46.
    Heughebaert M, LeGeros R, Gineste M, Guilhem A, Bonel G. Physicochemical characterization of deposits associated with HA ceramics implanted in nonosseous sites. J Biomed Mater Res. 1988;22(S14):257–68.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Zhang X, Zhou P, Zhang J, Chen W, Wu C. A study of HA ceramics and its osteogenesis. In: Ravaglioli A, Krahewsky A, editors. Bioceramics and the human body. London: Elsevier Applied Science; 1991. p. 408–16.Google Scholar
  48. 48.
    Yuan HP, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials. 1999;20:1799–806.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Oonishi H, Kutrshitani S, Yasukawa E, Iwaki H, Hench LL, Wilson J, Tsuji E, Sugihara T. Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Relat Res. 1997;334:316–25.CrossRefGoogle Scholar
  50. 50.
    Li S, De Wijn J, Layrolle P, De Groot K. Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. J Biomed Mater Res. 2002;61(1):109–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Chen Q, Thompson I, Boccaccini A. 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27(11):2414–25.PubMedCrossRefGoogle Scholar
  52. 52.
    Gerhardt L, Jell G, Boccaccini A. Titanium dioxide (TiO2) nanoparticles filled poly(d, l lactid acid) (PDLLA) matrix composites for bone tissue engineering. J Mater Sci Mater Med. 2007;18(7):1287–98.PubMedCrossRefGoogle Scholar
  53. 53.
    Chen Q, Boccaccini A, Zhang H, Wang D, Edirisinghe M. Improved mechanical reliability of bone tissue engineering (zirconia) scaffolds by electrospraying. J Am Ceramic Soc. 2006;89(5):1534–9.CrossRefGoogle Scholar
  54. 54.
    Wilson J, Pigot GH, Schoen FJ, Hench LL. Toxicology and biocompatibility of bioglass. J Biomed Mater Res. 1981;15:805–11.PubMedCrossRefGoogle Scholar
  55. 55.
    Hench LL, Splinter RJ, Allen WC. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp. 1971;2(part 1):117–41.CrossRefGoogle Scholar
  56. 56.
    Hench LL, Paschall HA. Direct chemical bond of bioactive glass–ceramic materials to bone and muscle. J Biomed Mater Res Symp. 1973;4:25–42.CrossRefGoogle Scholar
  57. 57.
    Hench LL, Paschall HA. Histochemical response at a biomaterial’s interface. J Biomed Mater Res Symp. 1974;5(Part 1):49–64.CrossRefGoogle Scholar
  58. 58.
    Gatti AM, Valdre G, Andersson OH. Analysis of the in vivo reactions of a bioactive glass in soft and hard tissue. Biomaterials. 1994;15:208–12.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Clark AE, Hench LL. Calcium phosphate formation on sol–gel derived bioactive glasses. J Biomed Mater Res. 1994;28:693–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Hench LL. Sol–gel materials for bioceramic applications. Curr Opin Solid State Mater Sci. 1997;2:604–10.CrossRefGoogle Scholar
  61. 61.
    Hench LL, Wilson J. Surface-active biomaterials. Science. 1984;226:630–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Schwartzalder K, Somers AV. Method of making a porous shape of sintered refractory ceramic articles. United States Patent no. 3090094, 1963.Google Scholar
  63. 63.
    Cowin SC. Bone mechanics. Boca Raton, FL: CTC Press; 1989. p. 1–4.Google Scholar
  64. 64.
    Gibson LJ, Ashby MF. Cellular solids: structure and properties. 2nd ed. Oxford: Pergamon; 1999. p. 429–52.Google Scholar
  65. 65.
    Tonino A, Thèrin M, Doyle C. Hydroxyapatite-coated femoral stems. J Bone Joint Surg. 1999;81(1):148–54.CrossRefGoogle Scholar
  66. 66.
    Gauthier O, Bouler J, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998;19(1-3):133–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Mao J, Giannobile W, Helms J, Hollister S, Krebsbach P, Longaker M, Shi S. Craniofacial tissue engineering by stem cells. J Dent Res. 2006;85(11):966–79.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell based therapies. Tissue Eng. 2001;7:211–28.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101–9.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Gimble JM, Guilak F. Differentiation potential of adipose derived adult stem (ADAS) cells. Curr Top Dev Biol. 2003;58:137–60.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Hicok KC, Du Laney TV, Zhou YS, Halvorsen YD, Hitt DC, Cooper LF, Gimble JM. Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng. 2004;10:371–80.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol. 2004;22:560–7.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Park H, Temenoff JS, Tabata Y, Caplan AI, Mikos AG. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials. 2007;28:3217–27.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Shang Q, Wang Z, Liu W, Shi Y, Cui L, Cao Y. Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. J Craniofac Surg. 2001;12:586–93.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Okunieff P, Mester M, Wang J, Maddox T, Gong X, Tang D, Coffee M, Ding I. In vivo radioprotective effects of angiogenic growth factors on the small bowel of C3H mice. Radiat Res. 1998;150:204–11.PubMedCrossRefGoogle Scholar
  77. 77.
    Okunieff P, Wang X, Rubin P, Finkelstein JN, Constine LS, Ding I. Radiation-induced changes in bone perfusion and angiogenesis. Int J Radiat Oncol Biol Phys. 1998;42:885–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Hock JM, Cannalis E. Platelet-derived growth factor enhances bone cell replication but not differentiated function of osteoblasts. Endocrinology. 1994;134:1423–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Schliephake H, Bertram H, Lindenmaier W, Rohde M, Mayer H, Planck H. In-vitro engineering of human bone marrow derived mesenchymal stem cells (MSC) for tissue engineered growth of bone. Int J Oral Maxillofac Surg. 1999;28(Suppl 1):107–8.CrossRefGoogle Scholar
  80. 80.
    Chung CP, Kim DK, Park YJ, Nam KH, Lee SJ. Biological effects of drug loaded biodegradable membranes for guided bone regeneration. J Periodontal Res. 1997;32:172–5.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Rutherford RB, Ryan ME, Kennedy JE, Tucker MM, Charette MF. Platelet-derived growth factor and dexamethasone combined with a collagen matrix induce regeneration of the periodontium in monkeys. J Clin Periodontol. 1993;20:537–44.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Schliephake H. Bone growth factors in maxillofacial skeletal reconstruction. Int J Oral Maxillofac Surg. 2002;31(5):469–84.CrossRefGoogle Scholar
  83. 83.
    Thaller SR, Salzhauer MA, Rubinstein AJ, Thion A, Tesluk H. Effect of insulin-like growth factor type I on critical size calvarial bone defects in irradiated rats. J Craniofac Surg. 1998;9:138–41.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Stefani CM, Machado MA, Sallum EA, Toledo S, Nocti HJR. Platelet derived growth factor/insulin-like growth factor-1 combination and bone regeneration around implants placed into extraction sockets: a histometric study in dogs. Implant Dent. 2000;9:126–31.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Nacti FHJ, Stefani CM, Machado MA, Sallum EA, Toledo S, Sallum AW. Histometric evaluation of bone regeneration around immediate implants partially in contact with bone: a pilot study in dogs. Implant Dent. 2000;9:321–8.CrossRefGoogle Scholar
  86. 86.
    Lynch SE, Buser D, Hernandez RA, Weber HP, Stich H, Fox CH, Williams RC. Effects of the plateletderived growth factor/insulin-like growth factor-I combination on bone regeneration around dental implants. Results of a pilot study in beagle dogs. J Periodontol. 1991;62:710–6.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Howell TH, Fiorellini JP, Paquette DW, Ofenbacher S, Giannobile WV, Lynch SE. A phase I/II trial to evaluate a combination of recombinant human platelet-derived growth factor-BB and recombinant human insulin-like growth factor-I in patients with periodontal disease. J Periodontal Res. 1997;68:1168–93.Google Scholar
  88. 88.
    Gao J, Symons AL, Bartold PM. Expression of transforming growth factor-beta 1 (TGF-beta 1) in the developing periodontium of rats. J Dent Res. 1998;77:1708–16.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Yamamoto M, Tabata Y, Hing L, Miyamoto S, Hashimoto N, Ikada Y. Bone regeneration by transforming growth factor-beta 1 released from a biodegradable hydrogel. J Control Release. 2000;64:133–42.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Hong L, Tabata Y, Niyamoto S, Yamada K, Aoyoma I, Tamura M, Hashimoto N, Ikada Y. Promoted bone healing at a rabbit skull gap between autologous bone fragment and the surrounding intact bone with biodegradable microspheres containing transforming growth factor-beta 1. Tissue Eng. 2000;6:331–40.PubMedCrossRefGoogle Scholar
  91. 91.
    Sandhu HS, Kanim LE, Kabo JM, Toth JM, Zeegen EN, Liu D, Delemarter RB, Dawson EG. Effective doses of recombinant human bone morphogenetic protein-2 in experimental spinal fusion. Spine. 1996;21:2115–22.PubMedCrossRefGoogle Scholar
  92. 92.
    Riley EH, Lane JM, Urist MR, Lyons KM, Lieberman JR. Bone morphogenetic protein-2: biology and applications. Clin Orthop. 1996;324:39–46.CrossRefGoogle Scholar
  93. 93.
    Higuchi T, Kinoshita A, Takahashi K, Oda S, Ishikawa I. Bone regeneration by recombinant human bone morphogenetic protein-2 in rat mandibular defects. an experimental model of defect filling. J Periodontol. 1999;70:1026–31.PubMedCrossRefGoogle Scholar
  94. 94.
    Gerhart TN, Kirker-Head CA, Kriz MJ, Holtrop ME, Hennig GE, Hipp J, Schelling SH. Healing of segmental femoral defects in sheep using recombinant human bone morphogenetic protein. Clin Orthop. 1993;293:317–23.Google Scholar
  95. 95.
    Cook SD, Baffes GC, Wolfe MW, Sampath TK, Rueger DC. Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin Orthop. 1994;301:302–11.Google Scholar
  96. 96.
    Bostrom M, Lane JM, Tomin E, Browne M, Berberian W, Turek T, Smith J, Woszeny J, Schildhauer T. Use of bone morphogenetic protein-2 in the rabbit ulnar nonunion model. Clin Orthop. 1996;327:272–82.CrossRefGoogle Scholar
  97. 97.
    Tozum TF, Demiralp B. Platelet-rich plasma: a promising innovation in dentistry. J Can Dent Assoc. 2003;69:664.PubMedGoogle Scholar
  98. 98.
    Ramay H, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials. 2004;25(21):5171–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringFaculty of Engineering , University of IsfahanIsfahanIran

Personalised recommendations