The Mouse Cerebellum

  • Hannsjörg SchröderEmail author
  • Natasha Moser
  • Stefan Huggenberger


The cerebellum is an important structure for the coordination and regulation of motor actions. Macroscopically it can be subdivided into the midline vermis and the lateral hemispheres. It disposes of a cortex of three layers (granular layer, Purkinje cell layer, and molecular layer) and an extended white matter (the so-called arbor vitae because it appears as a treelike structure). The latter harbors the cerebellar nuclei, the output structures of the cerebellum to other parts of the brain. The main cerebellar targets are the motor nuclei of the thalamus and the mesencephalic red nucleus. The main direct input to the cerebellum originates in the precerebellar nuclei reaching the Purkinje cells of the cerebellum either directly via the climbing fibers from the inferior olivary complex or via the mossy fibers from a number of other nuclei, predominantly the pontine nuclei. There is a cortico-cerebello-cortical loop starting in the cerebral cortex running to the pontine nuclei and from there to the cerebellum. The cerebellar Purkinje cells contact the cerebellar nuclei which via the dentato-rubro-thalamic tract target the motor thalamic nuclei. These close the loop via thalamocortical connections.


Cerebellum Purkinje cells Precerebellar nuclei Inferior olivary complex Cerebellar nuclei Climbing fibers Mossy fibers Dreher mouse 


  1. Ango F, Wu C et al (2008) Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites. PLoS Biol 6:e103. [Several transgenic mouse lines]CrossRefGoogle Scholar
  2. Barmack NH, Yakhnitsa V (2008) Functions of interneurons in mouse cerebellum. J Neurosci 28:1140–1152. [C57BL/6]CrossRefGoogle Scholar
  3. Bruchhage MMK, Bucci MP et al (2018) Cerebellar involvement in autism and ADHD. Handb Clin Neurol 155:61–72CrossRefGoogle Scholar
  4. Cesana E, Pietrajtis K et al (2013) Granule cell ascending axon excitatory synapses onto Golgi cells implement a potent feedback circuit in the cerebellar granular layer. J Neurosci 33:12430–12446. [rat]CrossRefGoogle Scholar
  5. Chaumont J, Guyon N et al (2013) Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge. Proc Natl Acad Sci U S A 110:16223–16228. [L7-ChR2-eYFP Mice]CrossRefGoogle Scholar
  6. Cheng FY, Fleming JT et al (2018) Bergmann glial sonic hedgehog signaling activity is required for proper cerebellar cortical expansion and architecture. Dev Biol 440:152–166. [Several transgenic mouse lines]CrossRefGoogle Scholar
  7. D’Angelo E, Solina S et al (2013) The cerebellar Golgi cell and spatiotermporal organization of granular layer activity. Front Neural Circuits 7:93PubMedGoogle Scholar
  8. Fahrion JK, Komuro Y et al (2013) Chapter 11: Cerebellar patterning. In: Rubinstein J, Rakic P (eds) Patterning and cell type specification in the developing CNS and PNS: comprehensive developmental neuroscience. Academic Press, AmsterdamGoogle Scholar
  9. Fink AJ, Englund C et al (2006) Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 26:3066–3076. [B6]CrossRefGoogle Scholar
  10. Fu Y, Tvrdik P et al (2011) Precerebellar cell groups in the hindbrain of the mouse defined by retrograde tracing and correlated with cumulative Wnt1-Cre genetic Labeling. Cerebellum 10:570–584. [C57BL/6]CrossRefGoogle Scholar
  11. Galliano E, Baratella M et al (2013) Anatomical investigation of potential contacts between climbing fibers and cerebellar Golgi cells in the mouse. Front Neural Circuits 7:59. [C57BL/6, GlyT2-EGFP]CrossRefGoogle Scholar
  12. Gilthorpe JD, Papantoniou E-K et al (2002) The migration of cerebellar rhombic lip derivatives. Development 129:4719–4728. [Chick]PubMedGoogle Scholar
  13. Haines DE, Olry R (2003) If there are “deep” cerebellar nuclei, where are the “superficial” ones? J Hist Neurosci 12:203–205CrossRefGoogle Scholar
  14. Hantman AW, Jessell TM (2010) Clarke’s column neurons as the focus of a corticospinal corollary circuit. Nat Neurosci 13:1233–1239. [Several transgenic mouse lines]CrossRefGoogle Scholar
  15. Huggenberger S, Moser N et al (2019) Neuroanatomie des Menschen. SpringerGoogle Scholar
  16. Inouye M, Oda SI (1980) Strain-specific variations in the folial pattern of the mouse cerebellum. J Comp Neurol 15:357–362. [13 different inbred mouse strains]CrossRefGoogle Scholar
  17. Klintworth GK (1968) The comparative anatomy and phylogeny of the tentorium cerebelli. Anat Rec 160:635–642. [mouse]CrossRefGoogle Scholar
  18. Lugaro E (1894) Sulle connessioni tra gli elementi nervosi della corteccia cerebellare con considerazioni generali sul significato fisiologico dei rapporti tra gli elementi nervosi. Riv Sper Fren Med Leg 20:297–331Google Scholar
  19. Millonig JH, Millen KJ et al (2000) The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403:764–769. [Heterozygous DreherJ]CrossRefGoogle Scholar
  20. Mugnaini E, Diño MR et al (1997) The unipolar brush cells of the mammalian cerebellum and cochlear nucleus: cytology and microcircuitry. Prog Brain Res 114:131–150CrossRefGoogle Scholar
  21. Nishiyama H, Linden DJ (2007) Pure spillover transmission between neurons. Nat Neurosci 10:675–677CrossRefGoogle Scholar
  22. Ottersen OP, Storm-Mathisen J (1984) Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol 229:374–392. [mouse]CrossRefGoogle Scholar
  23. Paxinos G, Franklin KB (2012) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates, 4th edn. Elsevier/Academic Press, Amsterdam. [C57BL/6]Google Scholar
  24. Paxinos G, Watson C (2010) BrainNavigator. Interactive atlas and 3D brain software for research, structure analysis, and education. Elsevier, AmsterdamGoogle Scholar
  25. Ramón y Cajal S (2000) Texture of the nervous system of man and the vertebrates, vol II. Translated and edited by P. Pasik and T. Pasik. SpringerGoogle Scholar
  26. Schilling K, Oberdick J et al (2008) Besides Purkinje cells and granule neurons: an appraisal of the cell biology of the interneurons of the cerebellar cortex. Histochem Cell Biol 130:601–615CrossRefGoogle Scholar
  27. Sillitoe RV, George-Jones NA et al (2014) Purkinje cell compartmentalization in the cerebellum of the spontaneous mutant mouse dreher. Brain Struct Funct 219:35–47. [Lmx1a dr-J /Lmx1a dr-J = dreher + wildtype]CrossRefGoogle Scholar
  28. Simat M, Parpan F et al (2007) Heterogeneity of glycinergic and Gabaergic interneurons in the granule cell layer of mouse cerebellum. J Comp Neurol 500:71–83. [GlyT2-GFP and GAD67-GFP on C57Bl6/J background]CrossRefGoogle Scholar
  29. Southan AP, Robertson B (1998) Patch-clamp recordings from cerebellar basket cell bodies and their presynaptic terminals reveal an asymmetric distribution of voltage-gated potassium channels. J Neurosci 18:948–955. [TO mice]CrossRefGoogle Scholar
  30. Sudarov A, Joyner AL (2007) Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers. Neural Dev 2:26. [SW]CrossRefGoogle Scholar
  31. Thomanetz V, Angliker N et al (2013) Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. J Cell Biol 201:293–208. [Several transgenic mouse lines]CrossRefGoogle Scholar
  32. Tlamsa AP, Brumberg JC (2010) Organization and morphology of thalamocortical neurons of mouse ventral lateral thalamus. Somatosens Mot Res 27:34–43. [CD1]CrossRefGoogle Scholar
  33. Ullmann JF, Keller MD et al (2012) Segmentation of the C57BL/6J mouse cerebellum in magnetic resonance images. Neuroimage 62:1408–1414. [C57BL/6J]CrossRefGoogle Scholar
  34. Uusissari M, Knöpfel T (2011) Functional classification of neurons in the mouse lateral cerebellar nuclei. Cerebellum 10:637–646. [mouse]CrossRefGoogle Scholar
  35. Van Dorp S, De Zeeuw CI (2015) Forward signalling by unipolar brush cells in the mouse cerebellum. Cerebellum 14:258–533. [C57BL/6]Google Scholar
  36. Van Essen D (2002) Surface-based atlases of cerebellar cortex in the human, macaque and mouse. Ann N Y Acad Sci 978:468–479. [mouse]CrossRefGoogle Scholar
  37. Watanabe D, Nakanishi S (2003) mGluR2 postsynaptically senses granule cell inputs at Golgi cell synapses. Neuron 39:821–829. [GFP+/+/mGluR2−/−]CrossRefGoogle Scholar
  38. White JJ, Sillitoe RV (2013) Development of the cerebellum: from gene expression patterns to circuit maps. Wiley Interdiscip Rev Dev Biol 2:149–164. [mouse]CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hannsjörg Schröder
    • 1
    Email author
  • Natasha Moser
    • 1
  • Stefan Huggenberger
    • 2
  1. 1.Department II of AnatomyUniversity Hospital CologneCologneGermany
  2. 2.Institute of Anatomy and Clinical MorphologyUniversity of Witten/HerdeckeWittenGermany

Personalised recommendations