Potential of Plant-Microbe Interactions in Management of Pesticide-Riddled Soil

  • Narendra Kumar
  • Sarika Chaturvedi
  • S. M. Paul Khurana


Pesticides have been widely used after the Second World War in management of weeds, diseases and pests of plants. Most of these have persistent nature and cause serious environmental concerns. They can be managed only through the biological agents for remediation of agricultural soils. The crop fields are normally over polluted through pesticides. Biodegradation of pesticides has been an ecofriendly, cost-effective, highly efficient approach in comparison to the physical and chemical means. The chemical means are not only expensive but also not ecofriendly. Biodegradation is sensitive to temperature and pH conversions. The researches hit that bioremediation has more potential than physicochemical approaches. Rhizosphere bacteria and fungi degrade organic pollutants known as bioremediation/rhizodegradation. If selected vegetation is used, there may be enhancement of pollutant decomposers in terms of numbers and action potential in the rhizosphere, which can result in speedy rhizodegradation of toxic pesticides. This is directly related with human health. It needs a very careful understanding of the mechanisms of pollutant degradation in the rhizosphere environment. Recent investigations revealed that plant-related microorganisms in the rhizosphere produce pesticide-decomposing enzymes. This mineralizes toxic pesticides. This rhizoremediation may be a promising technology in removal of pesticides in polluted soil. The chapter deals mainly with microbial interaction of rhizosphere.


Pesticides Microbial interaction Organic pollutants Rhizosphere Biodegradation Rhizodegradation 



Authors are thankful to the Amity University Haryana authorities for the facilities and constant encouragement.

Conflict of Interest Statement

We declare that we have no conflict of interest.


  1. Abhilash PC, Srivastava S, Srivastava P, Singh B, Jafri A, Singh S (2011) Influence of rhizospheric microbial inoculation and tolerant plant species on the rhizoremediation of lindane. Environ Exp Bot 74:127–130CrossRefGoogle Scholar
  2. Abo-Amer AE (2011) Biodegradation of diazinon by Serratia marcescens DI101 and its use in bioremediation of contaminated environment. J Microbiol Biotechnol 21:71–80PubMedCrossRefPubMedCentralGoogle Scholar
  3. Alberty RA (2006) Biochemical reactions at specified temperature and various pHs. In Biochemical thermodynamics. Book Series: Methods of Biochemical Analysis.
  4. Altaf R (2018) Kashmir’s Dal lake harbours bacteria that can degrade pesticides. Science (TWC India).
  5. Amos PW, Younger PL (2003) Substrate characterisation for a subsurface reactive barrier to treat colliery spoil leachate. Water Res 37:108–120PubMedCrossRefPubMedCentralGoogle Scholar
  6. Anderson JA, Kruger ER, Coats JR (1994) Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicide tolerant plant. Chemosphere 28:1551–1557CrossRefGoogle Scholar
  7. Atia M, Awad NM, Turky AZ (2002) Associative action of growth promoting Rhizobacteria and phytoremediationon the biodegradation of certain pesticides in soil. Bull Natl Res Centre Egypt 27:469–480Google Scholar
  8. Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778PubMedPubMedCentralCrossRefGoogle Scholar
  9. Barragán-Huerta BE, Costa-Pérez C, Peralta-Cruz J, Barrera-Cortés J, Esparza-García F, Rodríguez-Vázquez R (2007) Biodegradation of organochlorine pesticides by bacteria grown in microniches of the porous structure of green bean coffee. Int Biodeterior Biodegrad 59:239–244CrossRefGoogle Scholar
  10. Bending GD, Lincoln SD, Edmondson RN (2006) Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican bioremediation and phytoremediation of pesticides in soil and its relationship with chemical and microbial properties. Environ Pollut 139:279–287PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bhalerao TS, Puranik PR (2007) Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. Int Biodeterior Biodegrad 59:315–321CrossRefGoogle Scholar
  12. Bhupathiraju VK, Krauter P, Holman H-YN, Conrad ME, Daley PF, Templeton AS, Hunt JR, Hernandez M, Alvarez-Cohen L (2002) Assessment of in-situ bioremediation at a refinery waste-contaminated site and an aviation gasoline contaminated site. Biodegradation 13:79–90PubMedCrossRefPubMedCentralGoogle Scholar
  13. Boivin A, Cherrier R, Schiavon M (2005) A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils. Chemosphere 61:668–676PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bouziani M (2007) L’usage immodéré des pesticides. De graves conséquences sanitaires. Le Guide de la Médecine et de la Santé, Santémaghreb, 2007Google Scholar
  15. Briceño G, Fuentes MS, Palma G, Jorquera MA, Amoroso MJ, Diez MC (2012) Chlorpyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by actinobacteria isolated from soil. Int Biodeterior Biodegrad 73:1–7CrossRefGoogle Scholar
  16. Buvaneswari G, Thenmozhi R, Nagasathya A, Thajuddin N (2017) Screening of efficient monocrotophos degrading bacterial isolates from paddy field soil of Sivagangai District, Tamil Nadu, India. J Environ Sci Technol 10:13–24CrossRefGoogle Scholar
  17. Cáceres TP, Megharaj M, Naidu R (2008) Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr Microbiol 57:643–646PubMedCrossRefPubMedCentralGoogle Scholar
  18. Calderbank A (1989) The occurrence and significance of bound pesticide residues in soil. Rev Environ Contam Toxicol 108:71–103CrossRefGoogle Scholar
  19. Chang SW, Lee SJ, Je CH (2005) Phytoremediation of atrazine by poplar trees: Toxicity, uptake, and transformation. J Environ Sci Health 40:801–811CrossRefGoogle Scholar
  20. Charnay M, Tuis S, Coquet Y, Barriuso E (2005) Spatial variability in 14C-herbicide degradation in surface and subsurface soils. Pest Manag Sci 61:845–855PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48CrossRefGoogle Scholar
  22. Chen S, Lai K, Li Y, Hu M, Zhang Y, Zeng Y (2011) Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol 90:1471–1483PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chirnside AEM, Ritter WF, Radosevich M (2007) Bioremediation strategies for pesticide-contaminated Soil: IV. Biodegradation using a selected microbial consortium following pretreatment with fungal Enzymes. In: Proceedings of the 9th international in situ and on-site bioremediation symposium, Baltimore, MD, pp 1233–1240Google Scholar
  24. Chishti Z, Hussain S, Arshad KR, Khalid A, Arshad M (2013) Microbial degradation of chlorpyrifos in liquid media and soil. J Environ Manag 114:372–380CrossRefGoogle Scholar
  25. Chougale VV, Deshmukh AM (2007) Biodegradation of carbofuran pesticide by saline soil actinomycetes. Asian J Microbiol Biotechnol Environ Sci 9:1057–1061Google Scholar
  26. Cox C (1992) A new list of carcinogenic pesticides used in food. Northwest Coalition for Alternatives to Pesticides for the Indian context 12(4):28Google Scholar
  27. Dekkers LC, Mulders IHM, Phoelich CC, Chin-A-Woeng TFC, Wijfjes AHM, Lugtenberg BJJ (2000) The sss colonization gene of the tomato-Fusarium oxysporum f. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. bacteria. Mol Plant-Microbe Interact 13:1177–1183PubMedCrossRefPubMedCentralGoogle Scholar
  28. Drakeford CE, Dwight NC, Riley MB (2003) Fate of isoxaben in containerized rhizosphere system. Chemosphere 50:1243–1247PubMedCrossRefPubMedCentralGoogle Scholar
  29. Dubey KK, Fulekar MH (2011a) Effect of pesticides on the seed germination of Cenchrus setigerus and Pennisetum pedicellatum as monocropping and co-cropping system: implications for rhizospheric bioremediation. Romanian Biotechnol Lett 16:5909–5919Google Scholar
  30. Dubey KK, Fulekar MH (2011b) Chlorpyrifos bioremediation in Pennisetum rhizosphere by a novel potential degrader Stenotrophomonas maltophilia MHF ENV20. World J Microbiol Biotechnol 28:1715–1725. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Enrica G (1994) The role of microorganisms in environmental decontamination. In: Renzoni A (ed) Contaminants in the environment: a multidisciplinary assessment of risks to man and other organisms, vol 25. Lewis Publishers, Boca Raton, FL, pp 235–246Google Scholar
  32. EPA. Pesticides industry, sales and usage. April 2015.
  33. Farivar TN, Peymani A, Najafipour R, Aslani MM, Ali S (2017) Biodegradation of paraoxan as an organophosphate pesticide with Pseudomonas plecoglocissida transfected by opd Gene. Biotech Health Sci 4:e45055Google Scholar
  34. Fenlon KA, Jones KC, Semple KT (2007) Development of microbial degradation of cypermethrin and diazinon in organically and conventionally managed soils. J Environ Monit 9:510–515PubMedCrossRefPubMedCentralGoogle Scholar
  35. Foster LJR, Kwan BH, Vancov T (2004) Microbial degradation of the organophosphate pesticide. FEMS Microbiol Lett 240:49–53PubMedCrossRefPubMedCentralGoogle Scholar
  36. Fulekar MH (2005) Bioremediation technologies for environment. Indian J Environ Protect 25:358–364Google Scholar
  37. Gondim-Tomaz MA, Franco TT, Durrant LR (2005) Biodegradation of diuron and pyruthiobac-sodium by white-rot and soil fungi. Contamin Soils Sediments Water 9:21–32Google Scholar
  38. Gupta PK (2004) Pesticide exposure—Indian scene. Toxicology 198:83–90PubMedCrossRefPubMedCentralGoogle Scholar
  39. Gupta US (2005) Biodegradation of chlorinated hydrocarbon insecticide by Pseudomonas species. Himalayan J Environ Zool 19:1–10Google Scholar
  40. Ha J, Engler CR, Wild JR (2009) Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Bioresour Technol 100:138–1142CrossRefGoogle Scholar
  41. Hai FI, Modin O, Yamamoto K, Fukushi K, Nakajima F, Nghiem LD (2012) Pesticide removal by a mixed culture of bacteria and white-rot fungi. J Taiwan Inst Chem Eng 43:459–462CrossRefGoogle Scholar
  42. Harada N, Takagi K, Harazono A, Fujii K, Iwasaki A (2006) Isolation and characterization of microorganisms capable of hydrolysing the herbicide mefenacet. Soil Biol Biochem 38:173–179CrossRefGoogle Scholar
  43. Hodaifa G, Nieto LM, Casanova MS (2009) Elimination of pesticide residues from virgin olive oil by ultraviolet light: preliminary results. J Hazard Mater 168:555–559PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hodgson E, Roe RM, Goh DKS, Rock GC, Rose RL (1993) Insect cytochrome P-450: metabolism and resistance to insecticides. Biochem Soc Trans 21:1060–1065PubMedCrossRefPubMedCentralGoogle Scholar
  45. Huang Y, Xiao L, Li F, Xiao M, Lin D, Long X, Wu Z (2018) Microbial degradation of pesticide residues and an emphasis on the degradation of Cypermethrin and 3-phenoxy benzoic acid: a review. Molecules 23:2313. CrossRefPubMedCentralGoogle Scholar
  46. Jauregui J, Valderrama B, Albores A, Vazquez-Duhalt R (2003) Microsomal transformation of organophosphorus pesticides by white rot fungi. Biodegradation 14:397–406PubMedCrossRefPubMedCentralGoogle Scholar
  47. Johnson J, Ware WG (1992) Pesticide litigation manual edition, Clark Boardman Callaghan Environmental Law Series, New York, NYGoogle Scholar
  48. Kadam TA, Jadhav VD, Gyananath G (2003) Microbial degradation of dimethoate by gram negative soil isolates from cotton field. Pollut Res 22:443–445Google Scholar
  49. Karpouzas DG, Fotopoulou A, Menkissoglu-Spiroudi U, Singh BK (2005) Non-specific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos, by two bacterial isolates. FEMS Microbiol Ecol 53:369–378PubMedCrossRefPubMedCentralGoogle Scholar
  50. Karthikeyan R, Hutchinson SL (2012) Biodegradation of tertiary butyl mercaptan in water. J Bioremed Biodegr 3(6):156CrossRefGoogle Scholar
  51. Kataoka R, Takagi K, Sakakibara F (2010) A new endosulfan-degrading fungus, Mortierella species, isolated from a soil contaminated with organochlorine pesticides. J Pestic Sci 35:326–332CrossRefGoogle Scholar
  52. Korade DL, Fulekar MH (2009) Rhizoremediation of Chlorpyrifos in mycorrhizospheric soil using rye grass. J Hazard Mater 172:1344–1350PubMedCrossRefPubMedCentralGoogle Scholar
  53. Krishna KR, Philip L (2009) Biodegradation of mixed pesticides by mixed pesticide enriched cultures. J Environ Sci Health B Pesticides Food Contam Agric Wastes 44:18–30CrossRefGoogle Scholar
  54. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant microbe interaction. Mol Plant-Microbe Interact 17:6–15PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kulshrestha G, Kumari A (2010) Simultaneous degradation of mixed insecticides by mixed fungal culture isolated from sewage sludge. J Agric Food Chem 58:852–856CrossRefGoogle Scholar
  56. Kumar S, Anthonisamy A, Arunkumar S (2011) Biodegradation of methyl parathion and endosulfan using: Pseudomonas aeruginosa and Trichoderma viridae. J Environ Sci Eng 53:115–122Google Scholar
  57. Kye CM, Reukaradhya M, Islam K et al (2009) Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. J Agric Food Chem 57:1882–1889CrossRefGoogle Scholar
  58. Lan WS, Gu JD, Zhang JL (2006) Coexpression of two detoxifying pesticide-degrading enzymes in a genetically engineered bacterium. Int Biodeterior Biodegrad 58:70–76CrossRefGoogle Scholar
  59. Li H, Liang W, Wu X, Liu Y (2004) Research on biodegradation of organophosphorus insecticide by a novel psychrotrophic bacterium SA-8. Zhongshan Daxue Xuebao, Ziran Kexueban 43:131–132Google Scholar
  60. Liao M, Xie X (2008) Effects of combination of plant and microorganism on degradation of simazine in soil. J Environ Sci 20:195–198CrossRefGoogle Scholar
  61. Licht LA, Isebrands JG (2005) Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenergy 28:203–218CrossRefGoogle Scholar
  62. Lio M, Xie X (2009) Application of enterobacteraerogenes in degrading pyrethroid pesticide residue, and preparation with enterobacteraerogenes. Faming Zhuanli Shenqing, CN102021135 A, 2009Google Scholar
  63. Lipok J, Dombrovska I, Wieczorek P (2003) The ability of fungi isolated from stored carrot seeds to degrade organophosphonate herbicides. In: Pesticide in air, plant, soil and water system, proceedings of the 12th symposium pesticide chemistry, Piacenza, Italy, June 4–6, La Goliardica Pavese, pp 575–580Google Scholar
  64. Li-Qing BZ, Hong-Xia J, Yan-Chun Y (2008) Degradation of organophosphorus pesticide by engineered bacteria and immobilized cell. Huanjing Kexue Yu Jishu 31:45–48Google Scholar
  65. Liu YH, Chung YC, Xiong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256, isolated from sewage. Appl Environ Microbiol 67:3746–3749PubMedPubMedCentralCrossRefGoogle Scholar
  66. Liu J, Wang L, Zheng L, Wang X, Lee FSC (2006a) Analysis of bacteria degradation products of methyl parathion by liquid chromatography/electrospray time-of-flight mass spectrometry and gas chromatography/mass spectrometry. J Chromatogr 37:180–187CrossRefGoogle Scholar
  67. Liu Z, Hong Q, Xu JH, Jun W, Li SP (2006b) Construction of a genetically engineered microorganism for degrading organophosphate and carbamate pesticides. Int Biodeterior Biodegrad 58:65–69CrossRefGoogle Scholar
  68. Liu Z, Yang C, Qiao C-L (2007) Biodegradation of p-nitrophenol and 4-chlorophenol by Stenotrophomonas sp. FEMS Microbiol Lett 277:150–156PubMedCrossRefPubMedCentralGoogle Scholar
  69. Madhuban G, Debashis D, Das SK (2011) Biodegradation of imidacloprid and metribuzin by Burkholderia cepacia strain CH9. Pestic Res J 23:36–40Google Scholar
  70. Malghani S, Chatterjee N, Yu HX, Luo Z (2009) Isolation and identification of profenofos degrading bacteria. Braz J Microbiol 40:893–900PubMedPubMedCentralCrossRefGoogle Scholar
  71. Mbogo OK, Magoma G, Ngamau K et al (2012) Characterization of methomyl and carbofuran degrading-bacteria from soils of horticultural farms in Rift Valley and Central Kenya. Afr J Environ Sci Technol 6:104–114Google Scholar
  72. Melling FB (1993) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker, New YorkGoogle Scholar
  73. Mendoza JC, Perea Y, Salvador JA (2011) Bacterial biodegradation of permetrina and cipermetrina pesticides in a culture assemblage. Avances en Ciencias e Ingenieria 2:45–55Google Scholar
  74. Muhammad KJ, Mehrban A, Muhammad T (2016) Potential of biological agents in decontamination of agricultural soil. Scientifica, 1598325, 9 pages,. doi: CrossRefGoogle Scholar
  75. Nagpal V, Srinivasan MC, Paknikar KM (2008) Biodegradation of γ-hexachlorocyclohexane (Lindane) by a non-white rot fungus conidiobolus isolated from litter. Indian J Microbiol 48:134–141PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nawab A, Aleem A, Malik A (2003) Determination of organochlorine pesticides in agricultural soil with special reference to γ-HCH degradation by Pseudomonas strains. Bioresour Technol 88:41–46PubMedCrossRefPubMedCentralGoogle Scholar
  77. Ning L, Jing-ying C, Li L (2005) Isolation and selection of strains used to degrade organic PCNB pesticides and their application effects. Jilin Nongye Daxue Xuebao 27:205–208Google Scholar
  78. Nyakundi WO, Magoma G, Ochora J, Nyende AB (2011) Biodegradation of diazinon and methomyl pesticides by white rot fungi from selected horticultural farms in rift valley. J Appl Technol Environ Sanitation 1:107–124Google Scholar
  79. Okeke BC, Siddique T, Arbestain MC, Frankenberger WT (2002) Biodegradation of γ-hexachlorocyclohexane and α-hexachlorocyclohexane in water and soil slurry by Pandoraea sp. J Agric Food Chem 50:2548–2555PubMedCrossRefPubMedCentralGoogle Scholar
  80. Ortega SN, Nitschke M, Mouad AM (2011) Isolation of Brazilian marine fungi capable of growing on DDD pesticide. Biodegradation 22:43–50PubMedCrossRefPubMedCentralGoogle Scholar
  81. Ortiz-Hernandez M, Sanchez-Salinas E (2010) Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soil in Mexico. Revista Internacional de Contaminacion Ambiental 26:27–38Google Scholar
  82. Ouyang ZC, Wang YH, Li XN (2008) Test of pesticide degradability by Sphingomonas yanoikuyae XJ strain. Huanan Nongye Daxue Xuebao 29:47–49Google Scholar
  83. Pai SG, Riley MB, Camper ND (2001) Microbial degradation of mefenoxam in rhizosphere of zinnia anguistifolia. Chemosphere 44(4):577–582PubMedCrossRefPubMedCentralGoogle Scholar
  84. Paingankar M, Jain M, Deobagkar D (2005) Biodegradation of allethrin, a pyrethroid insecticide, by an Acidomonas sp. Biotechnol Lett 27:1909–1913PubMedCrossRefPubMedCentralGoogle Scholar
  85. Pattanasupong A, Nagase H, Inoue M (2004) Biodegradation of persistent pesticides by immobilized microbial consortia for use in paddy fields. Biotechnol Sust Util Biol Resour Tropics 17:421–425Google Scholar
  86. Peng X, Zhang JS, Li YY, Li W, Xu GM, Yan YC (2008) Biodegradation of insecticide carbofuran by Paracoccus sp. YM3. J Environ Sci Health 43:588–594CrossRefGoogle Scholar
  87. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39PubMedCrossRefPubMedCentralGoogle Scholar
  88. Pinto AP, Serrano C, Pires T (2012) Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. Sci Total Environ 43:402–410CrossRefGoogle Scholar
  89. Prabakaran V, Peterson A (2006) Effect of Pseudomonas on biodegradation of pesticide in the fish Cyprinus carpio. J Ecotoxicol Environ Monit 16:459–464Google Scholar
  90. Qiao L, Wang J (2010) Biodegradation characterization of a pyridine-degrading strain. Qinghua Daxue Xuebao 50:869–872Google Scholar
  91. Qiao CL, Yan YC, Shang HY, Zhou XT, Zhang Y (2003) Biodegradation of pesticides by immobilized recombinant Escherichia coli. Bull Environ Contam Toxicol 71:370–374PubMedCrossRefPubMedCentralGoogle Scholar
  92. Rasmussen G, Olsen RA (2004) Sorption and biological removal of creosote-contaminants from groundwater in soil/sand vegetated with orchard grass (Dactylis glomerata). Adv Environ Res 8:313–327CrossRefGoogle Scholar
  93. Romeh A (2001) Biodegradation of carbosulfan, pirimicarb and diniconazole pesticides by Trichoderma spp. J Environ Res 3:162–172Google Scholar
  94. Sabdono A, Radjasa OK (2008) Phylogenetic diversity of organophosphorous pesticide-degrading coral bacteria from Mid-West Coast of Indonesia. Biotechnology 7:694–701CrossRefGoogle Scholar
  95. Sagar V, Singh DP (2011) Biodegradation of lindane pesticide by non white-rots soil fungus Fusarium sp. World J Microbiol Biotechnol 27:1747–1754CrossRefGoogle Scholar
  96. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol 49:643–668CrossRefGoogle Scholar
  97. Sandman E, Loos MA (1984) Enumeration of 2, 4-D degrading microorganisms in soils and crop plant rhizospheres using indicator media: high populations associated with sugarcane (Saccharum officinarum). Chemosphere 13:1073–1084CrossRefGoogle Scholar
  98. Santacruz G, Bandala ER, Torres LG (2005) Chlorinated pesticides (2,4-D and DDT) biodegradation at high concentrations using immobilized Pseudomonas fluorescens. J Environ Sci Health B Pesticides Food Contam Agric Wastes 40:571–583CrossRefGoogle Scholar
  99. Sato K (1989) In: Vancura V, Kunc F (eds) Interrelationships between microorganisms and plants in soil. Elsevier, New York, pp 335–342CrossRefGoogle Scholar
  100. Savadogo PW, Savadogo A, Ouattara AS, Sedogo MP, Traoré AS (2007) Anaerobic biodegradation of sumithion an organophosphorus insecticide used in Burkina Faso agriculture by acclimatized indigenous bacteria. Pak J Biol Sci 10:1896–1905PubMedCrossRefPubMedCentralGoogle Scholar
  101. Sayler GS, Hooper SW, Layton AC, King JMH (1990) Catabolic plasmids of environmental and ecological significance. Microb Ecol 19:1–20PubMedCrossRefPubMedCentralGoogle Scholar
  102. Schroll R, Becher HH, Dorfler U, Gayler S, Grundmann S, Hartmann HP, Ruoss J (2006) Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Environ Sci Technol 40:3305–3312PubMedCrossRefPubMedCentralGoogle Scholar
  103. Seibert K, Fuehr F, Cheng HH (1981) In theory and practical use of soil-applied herbicides symposium. Eur Weed Resour Soc, Paris, pp 137–146Google Scholar
  104. Seo J, Lee YG, Kim SD, Cha CJ, Ahn JH, Hur HG (2005) Biodegradation of the insecticide N,N-diethyl-m-toluamide by fungi: identification and toxicity of metabolites. Arch Environ Contam Toxicol 48:323–328PubMedCrossRefPubMedCentralGoogle Scholar
  105. Shaw LJ, Richard GB (2004) Enhanced mineralization of [U-14C] 2,4-dichlorophenoxyacetic acid in soil from the Rhizosphere of Trifolium pratense. Appl Environ Microbiol 70:4766–4774PubMedPubMedCentralCrossRefGoogle Scholar
  106. Shivaramaiah HM, Kennedy IR (2006) Biodegradation of endosulfan by a soil bacterium. J Environ Sci Health B 41:895–905PubMedCrossRefPubMedCentralGoogle Scholar
  107. Shrivastava S, Prasad R, Varma A (2014) Anatomy of root from eyes of a microbiologist. In: Morte A, Varma A (eds) Root Engineering. Springer, Berlin, pp 3–22CrossRefGoogle Scholar
  108. Siddique T, Okeke BC, Arshad M, Frankenberger WT Jr (2002) Temperature and pH effects on biodegradation of hexachlorocyclohexane isomers in water and soil slurry. J Agric Food Chem 50:5070–5076PubMedCrossRefPubMedCentralGoogle Scholar
  109. Singh DK (2008) Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Indian J Microbiol 48:35–40PubMedPubMedCentralCrossRefGoogle Scholar
  110. Singh A, Ranjit JA, Dhasarathan P (2003) Isolation and characterization of pesticide metabolizing bacteria from groundnut soil system. Asian J Microbiol Biotech Environ Sci 5:323–332Google Scholar
  111. Singh BK, Walker A, Morgan JAW, Wright DJ (2004) Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 70:4855–4863PubMedPubMedCentralCrossRefGoogle Scholar
  112. Singh BK, Walker A, Wright DJ (2006) Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates: influence of different environmental conditions. Soil Biol Biochem 38:2682–2693CrossRefGoogle Scholar
  113. Slaoui M, Ouhssine M, Berny E, Elyachioui M (2007) Biodegradation of the carbofuran by a fungus isolated from treated soil. Afr J Biotechnol 6:419–423Google Scholar
  114. Soromotin A, Ogurtsova L, Morozova T, Zhdanova EB (2012) Method of microbiological degradation of organochlorine pesticides. Russian Patent 2448786Google Scholar
  115. Stephen DY, Shozo K (1980) Effect of organic matter and chemical fertilizers on the degradation of benthiocarb and mcpa herbicides in the soil. Soil Sci Plant Nutr 26:541–549CrossRefGoogle Scholar
  116. Stomp AM, Han KH, Wilbert S, Gordon MP, Cunningham SD (1994) Genetic strategies for enhancing phytoremediation. Ann N Y Acad Sci 721:481–492PubMedCrossRefPubMedCentralGoogle Scholar
  117. Sun H, Xu J, Yang S, Liu G, Dai S (2004) Plant uptake of aldicarb from contaminated soil and its enhanced degradation in the rhizosphere. Chemosphere 54:569–574PubMedCrossRefPubMedCentralGoogle Scholar
  118. Surekha RM, Lakshmi PKL, Suvarnalatha D (2008) Isolation and characterization of a chlorpyrifos degrading bacterium from agricultural soil and its growth response. Afr J Microbiol 2:26–31Google Scholar
  119. Tallur PN, Megadi VB, Ninnekar HZ (2008) Biodegradation of Cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 19:77–82PubMedCrossRefPubMedCentralGoogle Scholar
  120. Tian LS, Chen F (2012) Biological characteristics and degradation performance of a degrading strain. Yangzhou Daxue Xuebao 33:86–90Google Scholar
  121. Tingting L, Kunming D, Miao L et al (2012) Isolation, identification and biodegradation characteristics of a bacterial strain able to degrade bifenthrin. Nongye Huanjing KexueXuebao 31:1147–1152Google Scholar
  122. Veiga MM, Silva DM, Veiga LBE, de Castro Faria MV (2006) Pesticide pollution in water systems in a small rural community in Southeast Brazil. Cad Saude Publica 22:2391–2399PubMedCrossRefPubMedCentralGoogle Scholar
  123. Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73:1163–1172CrossRefGoogle Scholar
  124. Wang M, Yang G, Wang X, Yao Y, Min H, Lu Z (2011) Nicotine degradation by two novel bacterial isolates of Acinetobacter sp. TW and Sphingomonas sp. TY and their responses in the presence of neonicotinoid insecticides. World J Microbiol Biotechnol 27:1633–1640CrossRefGoogle Scholar
  125. Wyss A, Boucher J, Montero A, Marison I (2006) Micro-encapsulated organic phase for enhanced bioremediation of hydrophobic organic pollutants. Enzym Microb Technol 40:25–31CrossRefGoogle Scholar
  126. Xiang-Ming L, Ping-Ping C (2012) Progress in degradation of organo-chlorinated pesticides by microorganism. Huanjing Kexue Yu Jishu 35:89–93Google Scholar
  127. Xie S, Liu J, Li L, Qiao C (2009) Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. J Environ Sci 21:76–82CrossRefGoogle Scholar
  128. Xue-Dong W, Xiao-Ming O, Hui-Li W (2003) Optimized cultivation of highly-efficient bacterial strains and their biodegradation ability towards imazapyr. Nongye Huanjing Kexue Xuebao 22:102–105Google Scholar
  129. Yin L, Li X, Liu Y, Zhang D, Zhang S, Luo X (2012) Biodegradation of cypermethrin by rhodopseudomonas palustris GJ-22 isolated from activated sludge. Fresenius Environ Bull A 21:397–405Google Scholar
  130. Yoshii K, Tonogai Y, Ueno H, Nakamuro K (2006) Malathion residue in wheat kernels is degraded by thion organophosphorus pesticide-specific carboxylesterase. J Health Sci 52:221–227CrossRefGoogle Scholar
  131. Yu YL, Chen YX, Luo YM, Pan XD, He YF, Wong MH (2003) Rapid degradation of butachlor in wheat rhizosphere soil. Chemosphere 50:771–774PubMedCrossRefPubMedCentralGoogle Scholar
  132. Yu YL, Fang H, Wang X, Wu XM, Shan M, Yu JQ (2006) Characterization of a fungal strain capable of degrading chlorpyrifos and its use in detoxification of the insecticide on vegetables. Biodegradation 17:487–494PubMedCrossRefPubMedCentralGoogle Scholar
  133. Zeinat K, Nashwa AH, Ibrahim M (2008) Biodegradation and detoxification of malathion by of Bacillus thuringiensis MOS-5. Aust J Basic Appl Sci 2:724–732Google Scholar
  134. Zhang D, Xinqiu T, Xiangwen L (2005) Isolation of photosynthetic bacteria HP-1 with degradation of organic-phosphorus insecticides and studies on its biodegradation ability and capacity of increasing growth. Shengming Kexue Yanjiu 9:247–253Google Scholar
  135. Zhang X, Wu W, Zhang Y et al (2007) Screening of efficient hydrocarbon-degrading strains and study on influence factors of degradation of refinery oily sludge. Ind Eng Chem Res 46:8910–8917CrossRefGoogle Scholar
  136. Zhang H, Yang C, Li C, Li C, Zhao Q, Qiao C (2008) Functional assembly of a microbial consortium with autofluorescent and mineralizing activity for the biodegradation of organophosphates. J Agric Food Chem 56:7897–7902PubMedCrossRefPubMedCentralGoogle Scholar
  137. Zhang J, Sun Z, Li Y, Peng X, Li W, Yan Y (2009) Biodegradation of p-nitrophenol by Rhodococcus sp. CN6 with high cell surface hydrophobicity. J Hazard Mater 163:723–728PubMedCrossRefPubMedCentralGoogle Scholar
  138. Zhao P, Wen-jing Q, Wang Y (2012) Isolation and identification of two strains capable of degrading of organophosphorus pesticides and their biodegradation abilities. Lanzhou LigongDaxue Xuebao 36:86–90Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Narendra Kumar
    • 1
  • Sarika Chaturvedi
    • 1
  • S. M. Paul Khurana
    • 1
  1. 1.Amity Institute of Biotechnology, Amity University HaryanaManesar, GurgaonIndia

Personalised recommendations