Advertisement

Soil–Microbes–Plants: Interactions and Ecological Diversity

  • Prem Chandra
  • Enespa
Chapter

Abstract

In interactions between plants and soil, microorganisms have significant roles. Ecological stability is contributed by the biogeochemical cycling of elements. An emerging body of research is distinguishing the impacts that root-associated microbial communities can have on plant fitness and growth. Rocks and minerals are weathered by the activities of plants, which exude various types of hormones, with a crucial role in the supply of organic matter and formation of soils. Various types of plant species have distinctive biological characteristics that show constraint to precise soil types. Plant–microbe interactions in soil are contributing to a new, microbially based perspective on plant community and ecology. These microorganisms are soil dwellers, diverse, and their interactions with plants vary with respect to specificity, environmental heterogeneity, and fitness impact. The key influences on plant community structure and dynamics are effected by two microbial procedures: microbial intervention of niche diversity in resource use and response dynamics among the soil community and plants. The hypothesis of niche diversity is based on various interpretations that the nutrients of soil are found in different chemical forms: the plant requires accessing these enzymes and nutrients, and the microorganisms of the soil are a major source of these enzymes. Plant–microbe interactions are a significant establishing force for extensive spatial gradients in species abundance. The positive response (a homogenizing force) and negative response (a diversifying force) of virtual balance may contribute to detected latitudinal (and altitudinal) diversity patterns. The microbially based perception for the ecology of plants promises to contribute to our understanding of long-standing issues in ecology and to disclose new areas of future investigation.

Keywords

Rhizospheric bacteria Microbial communication Soil microorganisms Soil ecology Plant interactions 

References

  1. Araújo WL, Creason AL, Mano ET, Camargo-Neves AA, Minami SN, Chang JH, Loper JE (2016) Genome sequencing and transposon mutagenesis of Burkholderia seminalis TC3.4.2 R3 identify genes contributing to suppression of orchid necrosis caused by B. gladioli. Mol Plant Microbe Interact 29:435–446PubMedCrossRefGoogle Scholar
  2. Ardanov P, Sessitsch A, Häggman H, Kozyrovska N, Pirttilä AM (2012) Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS One 7:1–8CrossRefGoogle Scholar
  3. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920PubMedCrossRefGoogle Scholar
  4. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681PubMedCrossRefGoogle Scholar
  5. Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Biotechnol 20:642–650CrossRefGoogle Scholar
  6. Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Sci 19(2):90–98CrossRefGoogle Scholar
  7. Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Sci 9:26–32CrossRefGoogle Scholar
  8. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefGoogle Scholar
  9. Balendres MA, Nichols DS, Tegg RS, Wilson CR (2016) Metabolomes of potato root exudates: compounds that stimulate resting spore germination of the soil-borne pathogen Spongospora subterranea. J Agric Food Chem 64:7466–7474PubMedCrossRefGoogle Scholar
  10. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814PubMedCrossRefPubMedCentralGoogle Scholar
  11. Barrière Q, Guefrachi I, Gully D, Lamouche F, Pierre O, Fardoux J, Mergaert P (2017) Integrated roles of BclA and DD-carboxypeptidase 1 in Bradyrhizobium differentiation within NCR-producing and NCR-lacking root nodules. Sci Rep 7:1–13CrossRefGoogle Scholar
  12. Barsainya M, Chandra P, Singh DP (2016) Investigation of Cr (VI) uptake in saline condition using psychrophilic and mesophilic Penicillium sp. Int J Curr Microbiol App Sci 5(1):274–288CrossRefGoogle Scholar
  13. Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192CrossRefGoogle Scholar
  14. Beattie GA (2007) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Plant-associated bacteria. Springer, Dordrecht, pp 1–56Google Scholar
  15. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Bateman A (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417:141–147PubMedCrossRefGoogle Scholar
  16. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Sci 17:478–486CrossRefGoogle Scholar
  17. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13PubMedCrossRefGoogle Scholar
  18. Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32:1180–1204PubMedCrossRefGoogle Scholar
  19. Bever JD (2003) Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol 157:465–473CrossRefGoogle Scholar
  20. Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. BioScience 51:923–931CrossRefGoogle Scholar
  21. Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478PubMedPubMedCentralCrossRefGoogle Scholar
  22. Björkman M, Klingen I, Birch AN, Bones AM, Bruce TJ, Johansen TJ, Stewart D (2011) Phytochemicals of Brassicaceae in plant protection and human health: influences of climate, environment and agronomic practice. Phytochemistry 72:538–556PubMedCrossRefGoogle Scholar
  23. Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Biol 4:343–350Google Scholar
  24. Bobbink R, Hornung M, Roelofs JG (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738CrossRefGoogle Scholar
  25. Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA (2014) A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet 10:1–12CrossRefGoogle Scholar
  26. Boer WD, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811PubMedCrossRefGoogle Scholar
  27. Bogino P, Abod A, Nievas F, Giordano W (2013) Water-limiting conditions alter the structure and biofilm-forming ability of bacterial multispecies communities in the alfalfa rhizosphere. PLoS One 8:1–17CrossRefGoogle Scholar
  28. Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14:224–228PubMedCrossRefGoogle Scholar
  29. Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851CrossRefGoogle Scholar
  30. Braga RM, Dourado MN, Araújo WL (2016) Microbial interactions: ecology in a molecular perspective. Braz J Microbiol 47(suppl 1):86–98CrossRefGoogle Scholar
  31. Brooker RW, Bennett AE, Cong WF, Daniell TJ, George TS, Hallett PD, Li L (2015) Improving intercropping: a synthesis of research in agronomy. New Phytol 206:107–117PubMedCrossRefGoogle Scholar
  32. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  33. Burr TJ, Schroth MN, Suslow T (1978) Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology 68:1377–1383CrossRefGoogle Scholar
  34. Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41CrossRefGoogle Scholar
  35. Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia (Berl) 143:1–10CrossRefGoogle Scholar
  36. Chamoun R, Aliferis KA, Jabaji S (2015) Identification of signatory secondary metabolites during mycoparasitism of Rhizoctonia solani by Stachybotrys elegans. Front Microbiol 6:1–11CrossRefGoogle Scholar
  37. Chandra P, Enespa (2017) Microbial volatiles as chemical weapons against pathogenic fungi. In: Volatiles and food security. Springer, Singapore, pp 227–254Google Scholar
  38. Chandra P, Enespa (2019) Fungal Community for Novel Secondary Metabolites. In: Recent advancement in white biotechnology through fungi. Springer, Cham, pp 249–283Google Scholar
  39. Chandra P, Singh E (2016) Applications and mechanisms of plant growth-stimulating rhizobacteria. In: Plant–microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 37–62CrossRefGoogle Scholar
  40. Chandra P, Enespa, Mukesh K (2019) Contribution of microbes in the renovation of wetlands. Springer Nature, Singapore, pp 105–026Google Scholar
  41. Chapin FS, Matson PA, Mooney HA (2002) Terrestrial decomposition. Springer, New York, pp 151–175Google Scholar
  42. Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513PubMedCrossRefGoogle Scholar
  43. Choudhary DK, Prakash A, Wray V, Johri BN (2009) Insights of the fluorescent pseudomonads in plant growth regulation. Curr Sci 97:170–179Google Scholar
  44. Codispoti LA, Brandes JA, Christensen JP, Devol AH, Naqvi SWA, Paerl HW, Yoshinari T (2001) The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene. Sci Mar (Barc) 65:85–105CrossRefGoogle Scholar
  45. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  46. Cray JA, Bell AN, Bhaganna P, Mswaka AY, Timson DJ, Hallsworth JE (2013) The biology of habitat dominance: can microbes behave as weeds. Microb Biotechnol 6:453–492PubMedPubMedCentralCrossRefGoogle Scholar
  47. Curl EA, Truelove B (2012) The rhizosphere. Advanced Series in Agricultural Sciences, vol 15. Springer Science, BerlinGoogle Scholar
  48. Davis MA, Chew MK, Hobbs RJ, Lugo AE, Ewel JJ, Vermeij GJ, Thompson K (2011) Don’t judge species on their origins. Nature 474:153–154CrossRefGoogle Scholar
  49. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559CrossRefGoogle Scholar
  50. De Coninck B, Timmermans P, Vos C, Cammue BP, Kazan K (2015) What lies beneath: belowground defense strategies in plants. Trends Sci 20:91–101CrossRefGoogle Scholar
  51. De Deyn GB, Raaijmakers CE, Van Ruijven J, Berendse F, Van Der Putten WH (2004) Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos 106:576–586CrossRefGoogle Scholar
  52. Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7:1–8CrossRefGoogle Scholar
  53. Depoorter E, Bull MJ, Peeters C, Coenye T, Vandamme P, Mahenthiralingam E (2016) Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Appl Microbiol Biotechnol 100:5215–5229PubMedCrossRefGoogle Scholar
  54. Downer CC (2014) The horse and burro as positively contributing returned natives in North America. Am Life Sci 2:5–23CrossRefGoogle Scholar
  55. Enespa, Chandra P (2017) Microbial volatiles as chemical weapons against pathogenic fungi. In: Choudhary D, Sharma A, Agarwal P, Varma A, Tuteja N (eds) Volatiles and food security. Springer, BerlinGoogle Scholar
  56. Enespa, Dwivedi SK (2014) Effectiveness of some antagonistic fungi and botanicals against Fusarium solani and Fusarium oxysporum f. sp. lycopersici infecting Brinjal and tomato plants. Asian J Plant Patho 8(1):18–25CrossRefGoogle Scholar
  57. Fiehn O, Wohlgemuth G, Scholz M, Kind T, Lee DY, Lu Y, Nikolau B (2008) Quality control for plant metabolomics: reporting MSI-compliant studies. Plant J 53:691–704PubMedCrossRefGoogle Scholar
  58. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269PubMedPubMedCentralCrossRefGoogle Scholar
  59. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am Bot 100:1738–1750CrossRefGoogle Scholar
  60. Gemperline E, Horn HA, DeLaney K, Currie CR, Li L (2017) Imaging with mass spectrometry of bacteria on the exoskeleton of fungus-growing ants. ACS Chem Biol 12:1980–1985PubMedPubMedCentralCrossRefGoogle Scholar
  61. Gilbert GS (2002) Evolutionary ecology of plant diseases in natural ecosystems. Annu Rev Phytopathol 40:13–43PubMedCrossRefGoogle Scholar
  62. Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67:574–592PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371PubMedPubMedCentralCrossRefGoogle Scholar
  64. Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977CrossRefGoogle Scholar
  65. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307PubMedCrossRefGoogle Scholar
  66. Hacquard S, Garrido-Oter R, González A, Spaepen S, Ackermann G, Lebeis S, Schulze-Lefert P (2015) Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17:603–616PubMedCrossRefPubMedCentralGoogle Scholar
  67. Hansen EM, Goheen EM (2000) Phellinus weirii and other native root pathogens as determinants of forest structure and process in western North America. Annu Rev Phytopathol 38:515–539PubMedCrossRefGoogle Scholar
  68. Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320PubMedPubMedCentralCrossRefGoogle Scholar
  69. Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157PubMedCrossRefPubMedCentralGoogle Scholar
  70. Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257CrossRefGoogle Scholar
  71. Hausch S, Vamosi SM, Fox JW (2018) Effects of intraspecific phenotypic variation on species coexistence. Ecology 99:1453–1462PubMedCrossRefGoogle Scholar
  72. Herbst FA, Lünsmann V, Kjeldal H, Jehmlich N, Tholey A, von Bergen M, Nielsen PH (2016) Enhancing metaproteomics: the value of models and defined environmental microbial systems. Proteomics 16:783–798PubMedCrossRefGoogle Scholar
  73. Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25PubMedPubMedCentralCrossRefGoogle Scholar
  74. Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15CrossRefGoogle Scholar
  75. Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24CrossRefGoogle Scholar
  76. Hoitink HA, Fahy PC (1986) Basis for the control of soilborne plant pathogens with composts. Annu Rev Phytopathol 24:93–114CrossRefGoogle Scholar
  77. Igiehon NO, Babalola OO (2018) Below-ground-above-ground plant-microbial interactions: focusing on soybean, rhizobacteria and mycorrhizal fungi. Microbiol J 12:261–279Google Scholar
  78. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Soil 37:1–16Google Scholar
  79. Jenny H (1980) The soil resource: origin and behavior. Ecological studies, vol 37. Springer, New YorkGoogle Scholar
  80. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374CrossRefGoogle Scholar
  81. Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, Rainey PB, Bohannan BJ (2004) Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol 19:189–197PubMedCrossRefGoogle Scholar
  82. Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76:46–65PubMedCrossRefGoogle Scholar
  83. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13PubMedCrossRefGoogle Scholar
  84. Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647PubMedCrossRefGoogle Scholar
  85. Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480CrossRefGoogle Scholar
  86. Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961PubMedCrossRefGoogle Scholar
  87. Jones MG, Iqbal S, Fosu-Nyarko J (2016) Belowground defence strategies against migratory nematodes. In: Belowground defence strategies in plants. Springer, Cham, pp 253–278CrossRefGoogle Scholar
  88. Kanoh K, Kamino K (2001) Effect of exogenous siderophores on iron uptake activity of marine bacteria under iron-limited conditions. Appl Environ Microl 67:1710–1717CrossRefGoogle Scholar
  89. Khan MR (2015) Nematode diseases of crops in India. In: Recent advances in the diagnosis and management of plant diseases. Springer India, Cham, pp 183–224CrossRefGoogle Scholar
  90. Kim ES, Trisurat Y, Muraoka H, Shibata H, Amoroso V, Boldgiv B, Ohte N (2018) The International Long-Term Ecological Research-East Asia-Pacific Regional Network (ILTER-EAP): history, development, and perspectives. Ecol Res 33:19–34CrossRefGoogle Scholar
  91. Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ 27:675–684CrossRefGoogle Scholar
  92. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, Douglas B (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277PubMedCrossRefGoogle Scholar
  93. Kong C, Liang W, Xu X, Hu F, Wang P, Jiang Y (2004) Release and activity of allelochemicals from allelopathic rice seedlings. J Agric Food Chem 52:2861–2865PubMedCrossRefPubMedCentralGoogle Scholar
  94. Korhonen A, Lehto T, Repo T (2015) Frost hardiness of mycorrhizal and non-mycorrhizal Scots pine under two fertilization treatments. Mycorrhiza 25(5):377–386CrossRefGoogle Scholar
  95. Koutsoudis MD, Tsaltas D, Minogue TD, von Bodman SB (2006) Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc Natl Acad Sci U S A 103:5983–5988PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant–soil feedbacks: a meta-analytical review. Ecol Lett 11:980–992PubMedCrossRefPubMedCentralGoogle Scholar
  97. Lacava PT, Araújo WL, Marcon J, Maccheroni W Jr, Azevedo JL (2004) Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis. Lett Appl Microbiol 39:55–59PubMedCrossRefPubMedCentralGoogle Scholar
  98. Laliberté E, Grace JB, Huston MA, Lambers H, Teste FP, Turner BL, Wardle DA (2013) How does pedogenesis drive plant diversity. Trends Ecol Evol 28:331–340PubMedCrossRefPubMedCentralGoogle Scholar
  99. Lambers H, Chapin FS, Pons TL (2008) Interactions among plants. In: Plant physiological ecology. Springer, New York, pp 505–531CrossRefGoogle Scholar
  100. Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant–microbe–soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115CrossRefGoogle Scholar
  101. Langley JA, Hungate BA (2003) Mycorrhizal controls on belowground litter quality. Ecology 84:2302–2312CrossRefGoogle Scholar
  102. Lanoue A, Burlat V, Henkes GJ, Koch I, Schurr U, Röse US (2010) De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol 185:577–588PubMedCrossRefGoogle Scholar
  103. Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587PubMedPubMedCentralCrossRefGoogle Scholar
  104. Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytol Adv Res 661:23–67Google Scholar
  105. Lee KJ, Oh B, Seralathan KK (2013) Advances in plant growth promoting rhizobacteria for biological control of plant diseases. In: Bacteria in agrobiology: disease management. Springer, Berlin, pp 1–13Google Scholar
  106. Li XG, Zhang TL, Wang XX, Hua K, Zhao L, Han ZM (2013) The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen. Int J Biol Sci 9:164–173PubMedPubMedCentralCrossRefGoogle Scholar
  107. Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Am J 42:421–428CrossRefGoogle Scholar
  108. Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Gen Med 8:1–11Google Scholar
  109. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556CrossRefGoogle Scholar
  110. Lynch JM, Benedetti A, Insam H, Nuti MP, Smalla K, Torsvik V, Nannipieri P (2004) Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol Fertil Soil 40:363–385CrossRefGoogle Scholar
  111. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Toth IAN (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629PubMedCrossRefGoogle Scholar
  112. Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic press, LondonGoogle Scholar
  113. Marschner P (2012) Rhizosphere biology. In: Marschner’s mineral nutrition of higher plants, 3rd edn. Springer, New York, pp 369–388CrossRefGoogle Scholar
  114. Massalha H, Korenblum E, Tholl D, Aharoni A (2017) Small molecules below-ground: the role of specialized metabolites in the rhizosphere. Plant J 90:788–807PubMedCrossRefGoogle Scholar
  115. Mauch-Mani B, Baccelli I, Luna E, Flors V (2017) Defense priming: an adaptive part of induced resistance. Annu Rev Plant Bio 68:485–512CrossRefGoogle Scholar
  116. McCann KS (2000) The diversity stability debate. Nature 405:228–233PubMedCrossRefGoogle Scholar
  117. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663PubMedCrossRefPubMedCentralGoogle Scholar
  118. Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23:606–617PubMedCrossRefGoogle Scholar
  119. Nega A (2014) Review on concepts in biological control of plant pathogens. J Biol Agric Health 4:33–54Google Scholar
  120. Nicol JM, Turner SJ, Coyne DL, Den Nijs L, Hockland S, Maafi ZT (2011) Current nematode threats to world agriculture. In: Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 21–43CrossRefGoogle Scholar
  121. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241PubMedCrossRefGoogle Scholar
  122. Packer A, Clay K (2003) Soil pathogens and Prunus serotina seedling and sapling growth near conspecific trees. Ecology 84:108–119CrossRefGoogle Scholar
  123. Palacios OA, Bashan Y, de-Bashan LE (2014) Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria: an overview. Biol Fertil Soils 50:415–432CrossRefGoogle Scholar
  124. Parnell JJ, Berka R, Young HA, Sturino JM, Kang Y, Barnhart DM, DiLeo MV (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Sci 7:1–12Google Scholar
  125. Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Sci 34:17–42CrossRefGoogle Scholar
  126. Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90:635–644PubMedCrossRefGoogle Scholar
  127. Pérez-Montaño F, Alías-Villegas C, Bellogín RA, Del Cerro P, Espuny MR, Jiménez-Guerrero I, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336PubMedCrossRefGoogle Scholar
  128. Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316CrossRefGoogle Scholar
  129. Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Biol 28:489–521CrossRefGoogle Scholar
  130. Pineda A, Zheng SJ, Van Loon JJ, Pieterse CM, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Sci 15:507–514CrossRefGoogle Scholar
  131. Polke M, Sprenger M, Scherlach K, Albán-Proaño MC, Martin R, Hertweck C, Jacobsen ID (2017) A functional link between hyphal maintenance and quorum sensing in Candida albicans. Mol Microbiol 103:595–617PubMedCrossRefGoogle Scholar
  132. Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer International, Switzerland, pp 247–260Google Scholar
  133. Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Annu Rev Ecol Evol Syst 40:699–715CrossRefGoogle Scholar
  134. Quiñones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Interact 18:682–693CrossRefGoogle Scholar
  135. Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81:537–547PubMedCrossRefGoogle Scholar
  136. Ramaswamy AV, Sorrels CM, Gerwick WH (2007) Cloning and biochemical characterization of the hectochlorin biosynthetic gene cluster from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 70:1977–1986PubMedCrossRefGoogle Scholar
  137. Rapparini F, Peñuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth. In: Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 21–42Google Scholar
  138. Rasolomampianina R, Bailly X, Fetiarison R, Rabevohitra R, Béna G, Ramaroson L, Avarre JC (2005) Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to α-and β-Proteobacteria. Mol Ecol 14:4135–4146PubMedCrossRefGoogle Scholar
  139. Ratnadass A, Blanchart É, Lecomte P (2013) Ecological interactions within the biodiversity of cultivated systems. In: Cultivating biodiversity to transform agriculture. Springer, Dordrecht, pp 141–179CrossRefGoogle Scholar
  140. Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in ‘lower’ land plants. Philos Trans R Soc Lond B Biol Sci 355:815–831PubMedPubMedCentralCrossRefGoogle Scholar
  141. Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycology 23:515–531Google Scholar
  142. Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant–microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281–2291CrossRefGoogle Scholar
  143. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 32:305–339CrossRefGoogle Scholar
  144. Rodrıguez-Echeverrıa S, Costa SR, Freitas H (2007) Biodiversity and interactions in the rhizosphere: effects on ecosystem functioning. In: Functional plant ecology. 7488. CRC Press, Boca Raton, FL, pp 581–595Google Scholar
  145. Romero IG, Ruvinsky I, Gilad Y (2012) Comparative studies of gene expression and the evolution of gene regulation. Nat Rev Genet 13(7):505–516PubMedPubMedCentralCrossRefGoogle Scholar
  146. Römheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180CrossRefGoogle Scholar
  147. Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26CrossRefGoogle Scholar
  148. Sawada H, Kuykendall LD, Young JM (2003) Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J Appl Microbiol 49:155–179Google Scholar
  149. Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Nannipieri P (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56PubMedCrossRefGoogle Scholar
  150. Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27–39PubMedCrossRefGoogle Scholar
  151. Selosse MA, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628PubMedCrossRefGoogle Scholar
  152. Shade A, Peter H, Allison SD, Baho D, Berga M, Bürgmann H, Matulich KL (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:1–19CrossRefGoogle Scholar
  153. Shamseldin A (2013) The role of different genes involved in symbiotic nitrogen fixation. Review. J Biotechnol Biochem 8:84–94Google Scholar
  154. Sharpley AN, Chapra SC, Wedepohl R, Sims JT, Daniel TC, Reddy KR (1994) Managing agricultural phosphorus for protection of surface waters: issues and options. J Environ Qual 23:437–451CrossRefGoogle Scholar
  155. Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43PubMedCrossRefGoogle Scholar
  156. Shrivastava S, Prasad R, Varma A (2014) Anatomy of root from eyes of a microbiologist. In: Morte A, Varma A (eds) Root engineering. Springer, Berlin, pp 3–22CrossRefGoogle Scholar
  157. Shtark OY, Borisov AY, Zhukov VA, Provorov NA, Tikhonovich IA (2010) Intimate associations of beneficial soil microbes with host plants. In: Soil microbiology and sustainable crop production. Springer, Dordrecht, pp 119–196CrossRefGoogle Scholar
  158. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedPubMedCentralGoogle Scholar
  159. Simard S, Asay A, Beiler K, Bingham M, Deslippe J, He X, Teste F (2015) Resource transfer between plants through ectomycorrhizal fungal networks. In: Horton TR (ed) Mycorrhizal networks. Ecological studies, vol 224. Analysis and synthesis. Springer, Dordrecht, pp 133–176Google Scholar
  160. Singh D, Raina TK, Kumar A, Singh J, Prasad R (2019) Plant microbiome: a reservoir of novel genes and metabolites. Plant Gene.  https://doi.org/10.1016/j.plgene.2019.100177 CrossRefGoogle Scholar
  161. Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Res 79:7–31Google Scholar
  162. Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic Press, New YorkGoogle Scholar
  163. Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13PubMedCrossRefGoogle Scholar
  164. Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20CrossRefGoogle Scholar
  165. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere.”. Proc Natl Acad Sci U S A 103:12115–12120PubMedPubMedCentralCrossRefGoogle Scholar
  166. Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240CrossRefGoogle Scholar
  167. Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M (2012) Matrix-assisted laser desorption ionization–time of flight mass spectrometry-based functional assay for rapid detection of resistance against β-lactam antibiotics. J Clin Microbiol 50:927–937PubMedPubMedCentralCrossRefGoogle Scholar
  168. Sugiyama A, Ueda Y, Zushi T, Takase H, Yazaki K (2014) Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS One 9:1–9Google Scholar
  169. Swamy MK, Akhtar MS, Sinniah UR (2016) Root exudates and their molecular interactions with rhizospheric microbes. In: Hakeem KR, Akhtar MS (eds) Plant, soil and microbes: vol 2. Mechanisms and molecular interactions. Springer, Cham, pp 59–77CrossRefGoogle Scholar
  170. Taylor JH, Peterson CA (2005) Ectomycorrhizal impacts on nutrient uptake pathways in woody roots. New For 30:203–214CrossRefGoogle Scholar
  171. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347PubMedPubMedCentralCrossRefGoogle Scholar
  172. Tewari S, Arora NK (2013) Transactions among microorganisms and plant in the composite rhizosphere habitat. In: Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 1–50Google Scholar
  173. Toby Kiers E, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol Lett 13:1459–1474PubMedCrossRefGoogle Scholar
  174. Toljander JF, Santos-González JC, Tehler A, Finlay RD (2008) Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiol Ecol 65:323–338PubMedCrossRefGoogle Scholar
  175. Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Currt Opin Microbiol 5:240–245CrossRefGoogle Scholar
  176. Van Der Heijden MG, Horton TR (2009) Socialism in soil. The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150CrossRefGoogle Scholar
  177. Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310PubMedCrossRefGoogle Scholar
  178. Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Sci 21:187–198CrossRefGoogle Scholar
  179. Vigo C, Norman JR, Hooker JE (2000) Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 49:509–514CrossRefGoogle Scholar
  180. Vovlas N, Rapoport HF, Jiménez Díaz RM, Castillo P (2005) Differences in feeding sites induced by root-knot nematodes, Meloidogyne sp., in chickpea. Phytopathology 95:368–375PubMedCrossRefPubMedCentralGoogle Scholar
  181. Walker AW, Duncan SH, Louis P, Flint HJ (2014) Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol 22:267–274PubMedCrossRefPubMedCentralGoogle Scholar
  182. Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14(4):7370–7390CrossRefGoogle Scholar
  183. Wardle DA, Karban R, Callaway RM (2011) The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol 26:655–662PubMedCrossRefPubMedCentralGoogle Scholar
  184. Wassmann R, Jagadish SVK, Sumfleth K, Pathak H, Howell G, Ismail A, Heuer S (2009) Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv Agron 102:91–133CrossRefGoogle Scholar
  185. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedCrossRefGoogle Scholar
  186. Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407CrossRefGoogle Scholar
  187. West SA, Diggle SP, Buckling A, Gardner A, Griffin AS (2007) The social lives of microbes. Annu Rev Ecol Evol Syst 38:53–77CrossRefGoogle Scholar
  188. Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Wooley SC (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523PubMedCrossRefGoogle Scholar
  189. Wright JS (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia (Berl) 130:1–14CrossRefGoogle Scholar
  190. Xu J (2006) Invited review: microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Mol Ecol 15:1713–1731PubMedCrossRefGoogle Scholar
  191. Yuan J, Zhang N, Huang Q, Raza W, Li R, Vivanco JM, Shen Q (2015) Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci Rep 5:1–8Google Scholar
  192. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333PubMedCrossRefGoogle Scholar
  193. Zornoza R, Acosta JA, Bastida F, Domínguez SG, Toledo DM, Faz A (2015) Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health. Soil 1:173–185CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Prem Chandra
    • 1
  • Enespa
    • 1
  1. 1.Department of Environmental MicrobiologySchool for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) UniversityLucknowIndia

Personalised recommendations