Efficiency of Soil, Plant and Microbes for Healthy Plant Immunity and Sustainable Agricultural System

  • Gufran Ahmad
  • Yasar Nishat
  • Mohammad Haris
  • Mohammad Danish
  • Touseef Hussain


For the vital functioning of soil ecosystem, microbes have always been the superior force in driving many processes. These microorganisms are the main key facilitators in nutrient cycles associated with plant root system by delivering nutrients and suppressing pathogens, thereby sustaining plant health. Their amazing activity and biochemical versatility, especially the roots of growing plants, show great potential for beneficial microorganisms, for the development of biotechnology applications, for the control of plants of wild plants and for increased food crops. In this chapter we review the existing literature on the interaction between plants, microorganisms and soil. The rhizosphere is an arena where the complex rhizosphere community, which includes both microflora and microfauna, communicates with pathogens and influences the outcome of pathogen infection. A number of microorganisms are advantageous to the plants which include nitrogen-fixing bacteria, endo- and ectomycorrhizal fungi and plant growth-promoting bacteria and fungi. Some of the activities include complex systems of communication, in case of symbiosis such as arbuscular microscopic symbiosis, many millions of years old, while others include exudates from the root and other products of the rhizodeposition which are used as substrates for soil microorganisms. Since degradation of organic compounds in the rhizosphere is encouraged by the release of root expressions and enzymes in plants, therefore, biodegradation plays an important role, depending on the contact between the soil and the contaminated substances surrounding the plants. There is a considerable potential in the expanded area of microorganisms to replace synthetic biological chemistry. Since microbial activities are an important and sensitive component of soil, they are also good indicators of soil disorder and ecosystem. Still, an extended use of microorganisms for bioindication purposes and sustainable means of soil management depends on advances in understanding microbial ecology, especially on a field scale. As a result, to enhance the regenerative capacity of soil ecosystems for sustainable agriculture, it is best to understand how to increase the dynamics and potential of soil biology. This will allow new applications of knowledge to address the challenges of pest and diseases and increase global food production and sustainable farming.


Rhizosphere Plant heath Bioremediation 


  1. Agrawal M, Singh B, Rajput M, Marshall F, Bell JN (2003) Effect of air pollution on peri-urban agriculture: a case study. Environ Pollut 126:323–329PubMedCrossRefGoogle Scholar
  2. Amato G, Liccardi GD, Amato M, Cazzola M (2002) Outdoor air pollution, climate changes and allergic bronchial asthma. Eur Respir J 20:763–776PubMedCrossRefGoogle Scholar
  3. Arneth A, Harisson S, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ, Feichter J, Korhola A, Kulmala M, O’Donnell D et al (2010) Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci 3:525–532CrossRefGoogle Scholar
  4. Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362PubMedCrossRefGoogle Scholar
  5. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefGoogle Scholar
  6. Baldotto LEB, Olivares FL (2008) Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system. Can J Microbiol 54:918–931PubMedCrossRefPubMedCentralGoogle Scholar
  7. Beckett KP, Freer-Smith P, Taylor G (2000) Effective tree species for local air quality management. J Arboric 26:12–19Google Scholar
  8. Bending GD (2003) The rhizosphere and its microorganisms. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopaedia of applied plant sciences. Academic, London, pp 1123–1129CrossRefGoogle Scholar
  9. Berg G, Krechel A, Ditz M, Faupel A, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229PubMedCrossRefGoogle Scholar
  10. Bharti N, Barnawal D, Wasnik K, Tewari SK, Kalra A (2016) Co-inoculation of Dietzia natronolimnaea and Glomus intraradiences with vermi compost positively influences Ocimum basilicum growth and resident microbial community structure in salt affected low fertility soils. Appl Soil Ecol 100:211–225CrossRefGoogle Scholar
  11. Bianciotto V, Minerdi D, Perotto S, Bonfante P (1996) Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193:123–131CrossRefGoogle Scholar
  12. Borrego-Hernandez O, Garcia-Reynoso JA, Ojeda-Ramirez MM, Suarez-Lastra M (2014) Retrospective health impact assessment for ozone pollution in Mexico city from 1991 to 2011. Atmosfera 27:261–271CrossRefGoogle Scholar
  13. Bouwer EJ, Zehnder AJB (1993) Bioremediation of organic compounds-putting microbial metabolisms to work. Trends Biotechnol 11:360–367PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bowen G, Rovira A (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102CrossRefGoogle Scholar
  15. Brack CL (2002) Pollution mitigation and carbon sequestration by an urban forest. Environ Pollut 116:195–200CrossRefGoogle Scholar
  16. Brimner TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agric Ecosyst Environ 100:3–16CrossRefGoogle Scholar
  17. Broeckling CD (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838CrossRefGoogle Scholar
  19. Calfapietra C, Fares S, Manes F, Morani A, Sgrigna G, Loreto F (2013) Role of biogenic volatile organic compounds (BVOC) emitted by urban trees on ozone concentration in cities: a review. Environ Pollut 183:71–80PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cardelino CA, Chameides WL (1990) Natural hydrocarbons, urbanization, and urban ozone. J Geophys Res 95:13971–13979CrossRefGoogle Scholar
  21. Carpenter-Boggs L, Loynachan TE, Stahl PD (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biol Biochem 27(11):1445–1451CrossRefGoogle Scholar
  22. Citernesi AS, Fortuna P, Filippi C, Bagnoli G, Giovannetti M (1996) The occurrence of antagonistic bacteria in Glomus mosseae pot cultures. Agronomie 16(10):671–677CrossRefGoogle Scholar
  23. Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2015) Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–1536PubMedCrossRefPubMedCentralGoogle Scholar
  24. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, Von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dzierzanowski K, Popek R, Gawronska H, Saebo A, Gawronski SW (2011) Deposition of particulate matter of different size fractions on leaf surface and waxes of urban forest species. Int J Phytorem 13:1037–1046CrossRefGoogle Scholar
  26. Ehlers RU (2006) Einsatz der Biotechnologie im biologischen Pflanzenschutz. Schrreihe Dtsch Phytomed Ges 8:17–31Google Scholar
  27. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478(7369):337–342PubMedCrossRefPubMedCentralGoogle Scholar
  28. Fowler D, Flechard C, Skiba U, Coyle M, Cape JN (1998) The atmospheric budget of oxidized nitrogen and its role in ozone formation and deposition. New Phytol 139:11–23CrossRefGoogle Scholar
  29. Gao Y, Cheng Z, Ling W, Huang J (2010) Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots. Bioresour Technol 101:6895–6901PubMedCrossRefGoogle Scholar
  30. Garbaye J (1991) Biological interactions in the mycorrhizosphere. Experientia 47(4):370–375CrossRefGoogle Scholar
  31. Gheorghe IF, Ion B (2015) The effects of air pollutants on vegetation and the role of vegetation in reducing atmospheric pollution. Accessed 22 Oct 2015
  32. Gianinazzi S, Schuepp H (1994) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser Verlag, Basel, p 226CrossRefGoogle Scholar
  33. Giese M, Baue-Doranth LC, Sandermann H Jr (1994) Detoxification of formaldehyde by the spider plant (Chlorophytum comosum L.) and by soybean (Glycine max L.) cell-suspension cultures. Plant Physiol 104:1301–1309PubMedPubMedCentralCrossRefGoogle Scholar
  34. Giri B, Giang PH, Kumari R, Prasad R, Sachdev M, Garg AP, Oelmuller R, Varma A (2005) Mycorrhizosphere: strategies and functions. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions, vol 3. Springer, Berlin, pp 213–252CrossRefGoogle Scholar
  35. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374PubMedCrossRefGoogle Scholar
  36. Goettel MS (2008) Are entomopathogenic fungi only entomopathogens? A preamble. J Invertebr Pathol 98:255PubMedCrossRefGoogle Scholar
  37. Gunnell D, Eddleston M, Phillips MR, Konradsen F (2007) The global distribution of fatal pesticide self-poisoning: systematic review. BMC Public Health 21(7):357CrossRefGoogle Scholar
  38. Harman EG, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Trichoderma species opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56PubMedCrossRefGoogle Scholar
  39. Harman WL, Gerik TJ, Williams JR (2004b) CROPMAN: a crop production/environmental simulation tool to enhance agricultural sustainability. In: Dilawari VK, Brar LS, Jalota SK (eds) Proceedings of sustaining agriculture: problems and prospects. Punjab Agricultural University, Ludhiana, pp 22–30Google Scholar
  40. Harrison SP, Morfopoulos C, Dani KGS, Prentice IC, Arneth A, Atwell BJ, Barkley MP, Leishman MR, Loreto F, Medlyn BE et al (2012) Volatile isoprenoid emissions from plastid to planet. New Phytol 197:49–57PubMedCrossRefGoogle Scholar
  41. Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285CrossRefGoogle Scholar
  42. Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründungung und Brache. ArbDtsch Landwirtsch Ges 98:59–78Google Scholar
  43. Ignoffo CM (1992) Environmental factors affecting persistence of entomopathogens. Fla Entomol 75:516–525CrossRefGoogle Scholar
  44. Jackson T, Glare TR (1992) Use of pathogens in scarab pest management. Intercept, AndoverGoogle Scholar
  45. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48(1):1–13PubMedCrossRefGoogle Scholar
  46. John MW (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511CrossRefGoogle Scholar
  47. Johnson SC, Mitchell C, McNicol JW, Thompson J, Karley AJ (2013) Downstairs drivers - root herbivores shape communities of above-ground herbivores and natural enemies via changes in plant nutrients. J Anim Ecol 82:1021–1030PubMedCrossRefGoogle Scholar
  48. Karami M, Homaee S, Afzalinia H, Ruhipour S (2012) Organic resource management: impacts on soil aggregate stability and other soil physico-chemical properties. Agric Ecosyst Environ 148:22–28CrossRefGoogle Scholar
  49. Karl T, Harley P, Emmons L, Thornton B, Guenther A, Basu C, Turnipseed A, Jardine K (2010) Efficient atmospheric cleansing of oxidized organic trace gases by vegetation. Science 330:816–819PubMedCrossRefGoogle Scholar
  50. Khan HU, Ahmad R, Ahmed W, Khan SM, Aslam Khan M (2001) Evaluation of the combined effects of Paecilomyces lilacinus and Trichoderma harzianum against root-knot disease of tomato. J Biol Sci 1(3):139–142CrossRefGoogle Scholar
  51. Kim KJ, Kil MJ, Song JS, Yoo EH (2008) Efficiency of volatile formaldehyde removal by indoor plants: contribution of aerial plant parts versus the root zone. Hortscience 133:521–526Google Scholar
  52. Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassman R, von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390CrossRefPubMedPubMedCentralGoogle Scholar
  53. Langley JA, Hungate BA (2003) Mycorrhizal controls on belowground litter quality. Ecology 84:2302–2312CrossRefGoogle Scholar
  54. Leach AW, Mumford JD (2008) Pesticide environmental accounting: a method for assessing the external costs of individual pesticide applications. Environ Pollut 151:139–147PubMedCrossRefGoogle Scholar
  55. Lee KE, Pankhurst CE (1992) Soil organisms and sustainable productivity. Aust J Soil Res 30(6):855–892CrossRefGoogle Scholar
  56. Lehmann A, Leifheit EF, Rilling MC (2017) Mycorrhiza and soil aggregation. Mycorrhizal mediation of soil fertility, structure and carbon storage, Chapter 14, pp 241–262Google Scholar
  57. Lesaulnier C, Papamichail D, McCorkle S, Olivier B, Skiena S, Taghavi S, Zak D, van der Lelie D (2008) Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941PubMedCrossRefGoogle Scholar
  58. Lichtfouse E, Navarrete M, Debaeke P, Souchère V, Alberola C, Ménassieu J (2009) Agronomy for sustainable agriculture: a review. In: Sustainable agriculture. Springer, Dordrecht, pp 1–7CrossRefGoogle Scholar
  59. Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the Mycorrhizosphere effect. Phytopathology 78:366–370Google Scholar
  60. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lynch JM (1986) Rhizosphere microbiology and its manipulation. Biol Agric Hortic 3:143–152CrossRefGoogle Scholar
  62. Lynch JM (ed) (1987) The rhizosphere. Wiley, ChichesterGoogle Scholar
  63. Lynch JM (1990) The Rhizosphere. Wiley, Chichester, 458 pGoogle Scholar
  64. Marilley L, Vogt G, Blanc M, Aragno M (1998) Bacterial diversity in the bulk soil and rhizosphere fractions of Lolium perenne and Trifolium repens as revealed by PCR restriction analysis of 16S rDNA. Plant Soil 198:219–224CrossRefGoogle Scholar
  65. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, LondonGoogle Scholar
  66. Maurhofer M, Keel C, Schnider U, Voisard C, Haas D, Defago G (1992) Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82:190–195CrossRefGoogle Scholar
  67. McDonald AG, Bealey WJ, Fowler D, Dragosits U, Skiba U, Smith RI, Donovan RG, Brett HE, Hewitt CN, Nemitz E (2007) Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmos Environ 41:8455–8467CrossRefGoogle Scholar
  68. McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage-sludge on soils, microorganisms and plants. J Ind Microbiol 14:94–104PubMedCrossRefGoogle Scholar
  69. McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247PubMedPubMedCentralCrossRefGoogle Scholar
  70. Megali L, Glauser G, Rasmann S (2013) Fertilization with beneficial microorganisms decrease tomato defenses against insect pests. Agron Sustain Dev 34:649–656CrossRefGoogle Scholar
  71. Miransari M (2011) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193:77–81PubMedCrossRefGoogle Scholar
  72. Mohsenzadeh F, Nasseri S, Mesdaghinia A, Nabizadeh R, Zafari D, Khodakaramian G, Chehregani A (2010) Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils. Ecotoxicol Environ Saf 73:613–619PubMedCrossRefGoogle Scholar
  73. Morris SJ, Blackwood CB (2015) The ecology of soil biota and their function, Chapter 10. In: Soil microbiology, ecology and biodiversity, 4th edn. Academic, London, pp 273–309CrossRefGoogle Scholar
  74. Mosttafiz S, Rahman M, Rahman M (2012) Biotechnology: role of microbes in sustainable agriculture and environmental health. Internet J Microbiol 101:1937–8289Google Scholar
  75. Myers I, Maynard RL (2005) Polluted air-outdoors and indoors. Occup Med 55:432–438CrossRefGoogle Scholar
  76. Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15(2):327–337Google Scholar
  77. Nowak DJ (2015) Air pollution removal by Chicago’s urban forest. Accessed 22 Oct 2015
  78. Nowak DJ, Civerloo KL, Rao ST, Sistla G, Luley CJ, Crane DEA (2000) Modeling study of the impact of urban trees on ozone. Atmos Environ 34:1610–1613CrossRefGoogle Scholar
  79. Nowak DJ, Crane DE, Stevens JC (2006) Air pollution removal by urban trees and shrubs in the United States. Urban For Urban Green 4:115–123CrossRefGoogle Scholar
  80. Nowak DJ, Crane DE, Stevens JC, Hoehn RE, Walton JT, Bond JA (2008) Ground-based method of assessing urban forest structure and ecosystem services. Arboricult Urban For 34:347–358Google Scholar
  81. Ostro BD, Tran H, Levy JI (2006) The health benefits of reduced tropospheric ozone in California. J Air Waste Manag Assoc 56:1007–1021PubMedCrossRefPubMedCentralGoogle Scholar
  82. Papen H, Gebler A, Zumbusch E, Rennenberg H (2002) Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input. Curr Microbiol 44:56–60PubMedCrossRefPubMedCentralGoogle Scholar
  83. Parrish DD, Zhu T (2009) Clean air for megacities. Science 326:674–675PubMedCrossRefPubMedCentralGoogle Scholar
  84. Pastuszka JS (2007) Effect of particulate aerosols on air quality—methods of identification and assessment (Wplyw aerozoli ziarnistych na jakosc powietrza—Metody identyfikacji I oceny. Ekoprofit. Finanse Nauka Technol. Prawo). Ekoprofit Financ Sci Technol Law 2:7–15Google Scholar
  85. Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, NY, 424 pGoogle Scholar
  86. Popek R, Gawronska H, Wrochna M, Gawronski SW, Saebo A (2012) Particulate matter on foliage of 13 woody species: deposition on surfaces and phytostabilization in waxes- a 3-year study. Int J Phytorem 15:245–256CrossRefGoogle Scholar
  87. Popek R, Gawrońska H, Gawroński SW (2015) The level of particulate matter on foliage depends on the distance from the source of emission. Int J Phytorem 17:1262–1268CrossRefGoogle Scholar
  88. Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Switzerland, pp 247–260CrossRefGoogle Scholar
  89. Prasad R, Gupta N, Satti U, Wang S, Ahmed ISA, Varma A (2017) Management of fungal pathogens by mycorrhiza. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer International Publishing AG, pp 179–194Google Scholar
  90. Qi WZ, Zhao L (2013) Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. J Basic Microbiol 53:355–364PubMedCrossRefGoogle Scholar
  91. Raaijmakers JM, Weller DM (2001) Exploiting genotypic diversity of 2,4 diacetylphloroglucinol producing pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol 67:2545–2554PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rajkumar M, Sandhya S, Prasad MNV (2012) Freitas, H. perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 1:1562–1574CrossRefGoogle Scholar
  93. Ren Y, Ge Y, Gu B, Min Y, Tani A, Chang J (2014) Role of management strategies and environmental factors in determining the emission of biogenic volatile organic compounds from urban greenspaces. Environ Sci Technol 48:6237–6246PubMedCrossRefPubMedCentralGoogle Scholar
  94. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  95. Saebo A, Popek R, Nawrot B, Hanslin HM, Gawronska H, Gawronski SW (2012) Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ 427-428:347–354PubMedCrossRefPubMedCentralGoogle Scholar
  96. Salthammer T, Uhde E (2009) Organic indoor air pollutants: occurrence-measurement-evaluation, 2nd edn. Wiley, New York, NY, pp 1–464CrossRefGoogle Scholar
  97. Samoli E, Aga E, Touloumi G, Nisiotis K, Forsberg B, Lefranc A, Pekkanen J, Wojtyniak B, Schindler C, Niciu E et al (2006) Short-term effects of nitrogen dioxide on mortality: an analysis within the APHEA project. Eur Respir J 27:1129–1137PubMedCrossRefPubMedCentralGoogle Scholar
  98. Scheller RM, Van Tuyl S, Clark KL, Hom J, La Puma I (2011) Carbon sequestration in New Jersey pine barrens under different scenarios of fire management. Ecosystems 2011(14):987–1004CrossRefGoogle Scholar
  99. Schneider A, Tesileanu R, Charles R, Sinaj S (2013) Kinetics of soil potassium sorption-desorption and fixation. Commun Soil Sci Plant Anal 44:837–849CrossRefGoogle Scholar
  100. Sedjo R, Sohngen B (2012) Carbon sequestration in forests and soils. Annu Rev Resour Econ 4:127–144CrossRefGoogle Scholar
  101. Sriprapat W, Thiravertyan P (2013) Phytoremediation of BTEX from indoor air by Zamioculcas zamiifolia. Water Air Soil Pollut 224:1482CrossRefGoogle Scholar
  102. St-Arnaud M, Vujanovic V (2007) Effect of the arbuscular mycorrhizal symbiosis on plant diseases and pests. In: Hamel C, Plenchette C (eds) Mycorrhizae in crop production. Haworth Food & Agricultural Products Press, Binghampton, NY, pp 67–122Google Scholar
  103. Studdert JP, Kaya HK (1990) Water potential, temperature, and soil type on the formation of Beauveria bassiana soil colonies. J Invertebr Pathol 56:380–386CrossRefGoogle Scholar
  104. Taha H (1996) Modeling impacts of increased urban vegetation on ozone air quality in the south coast Air Basin. Atmos Environ 30:3423–3430CrossRefGoogle Scholar
  105. Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:194–208CrossRefGoogle Scholar
  106. Vagaggini B, Taccola M, Cianchetti S, Carnevali S, Bartoli ML, Bacci E, Dente FL, Di Franco A, Giannini D, Paggiaro PI (2002) Ozone exposure increases eosinophilic airway response induced by previous allergen challenge. Am J Respir Crit Care Med 166:1073–1077PubMedCrossRefPubMedCentralGoogle Scholar
  107. Van Sluys MA, Monteiro-Vitorello CB, Camargo LE, Menck CF, da Silva AC, Ferro JA, Oliveira MC, Setubal JC, Kitajima JP, Simpson AJ (2002) Comparative genome analysis of plant-associated bacteria. Annu Rev Phytopathol 40:169–189PubMedCrossRefPubMedCentralGoogle Scholar
  108. Vega FE (2008) Insect pathology and fungal endophytes. J Invertebr Pathol 98:277–279PubMedCrossRefPubMedCentralGoogle Scholar
  109. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003(255):571–586CrossRefGoogle Scholar
  110. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Lim H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86CrossRefGoogle Scholar
  111. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840PubMedCrossRefPubMedCentralGoogle Scholar
  112. Voriskova J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486PubMedCrossRefGoogle Scholar
  113. Welburn A (1990) Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? New Phytol 115:395–429CrossRefGoogle Scholar
  114. Welburn A (1998) Atmospheric nitrogenous compounds and ozone-Is NOx fixation by plants a possible solution? New Phytol 139:5–9CrossRefGoogle Scholar
  115. Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009a) Exploiting plant–microbe partnerships for improving biomass production and remediation. Trends Biotechnol 27:591–598CrossRefGoogle Scholar
  116. Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009b) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254CrossRefGoogle Scholar
  117. Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511PubMedCrossRefGoogle Scholar
  118. Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227CrossRefGoogle Scholar
  119. White PJ (2003) Ion transport. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopaedia of applied plant sciences. Academic, London, pp 625–634CrossRefGoogle Scholar
  120. Winter K, Holtum JAM (2014) Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. J Exp Bot 65:425–3441Google Scholar
  121. Wolverton BC, Wolverton JD (1993) Plants and soil microorganisms: removal of formaldehyde, ethylbenzene, and ammonia from the indoor environment. J Miss Acad Sci 38:11–15Google Scholar
  122. World Health Organization (WHO) (2000) The right to healthy indoor air—report on a WHO meeting. World Health Organization (WHO), BilthovenGoogle Scholar
  123. Wu D, Sun MZ, Zhang C, Xin Y (2014) Antioxidant properties of lactobacillus and its protecting effect to oxidative stress Caco-2 cells. J Anim Plant Sci 24:1766–1771Google Scholar
  124. Yang J, McBride J, Zhou J, Sun Z (2005) The urban forest in Beijing and its role in air pollution reduction. Urban For Urban Green 3:65–68CrossRefGoogle Scholar
  125. Yang DS, Pennisi SV, Son KC, Kays SJ (2009) Screening indoor plants for volatile organic pollutant removal efficiency. Horscience 44:1377–1381CrossRefGoogle Scholar
  126. Yu C, Crump D (1998) A review of the emission of VOCs from polymeric materials used in buildings. Build Environ 33:357–337CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gufran Ahmad
    • 1
  • Yasar Nishat
    • 1
  • Mohammad Haris
    • 1
  • Mohammad Danish
    • 1
  • Touseef Hussain
    • 1
  1. 1.Deptartment of BotanyAligarh Muslim UniversityAligarhIndia

Personalised recommendations