Advertisement

Incorporating Online Survey and Social Media Data into a GIS Analysis for Measuring Walkability

  • Xuan Zhang
  • Lan MuEmail author
Chapter
Part of the Global Perspectives on Health Geography book series (GPHG)

Abstract

Existing walkability measurements have not considered some important components of the built environment, pedestrians’ preferences, or all walking purposes. As area-based measurements, they may overlook some detailed walkability changes. We propose a Perceived importance and Objective measure of Walkability in the built Environment Rating (POWER) method, which is a line-based approach considering both the perception of pedestrians and subjective characterizing of the urban built environment. Incorporating online survey and social media data, we present a built environment walkability study in a specific environment and the potential for more general scenarios. The survey can be customized for the particular urban environment and capture the preferences of a local population. The social media obtain general opinions from a broader audience. Although focusing on the specific setting at a university campus, we also included the general social media results to supplement the POWER structure and survey findings. Using social media and survey results can bring two scales together to provide a more complete understanding of walkability.

Keywords

GIS Walkability Survey Social media Built environment 

Notes

Acknowledgment

Thanks for the support received from the UGA Sustainability Grant.

References

  1. Berzi, C., Gorrini, A., & Vizzari, G. (2017). Mining the social media data for a bottom-up evaluation of walkability. arXiv preprint arXiv:1712.04309.Google Scholar
  2. Brooker, P., Barnett, J., & Cribbin, T. (2016). Doing social media analytics. Big Data & Society3(2), 2053951716658060.Google Scholar
  3. Browning, R. C., Baker, E. A., Herron, J. A., & Kram, R. (2006). Effects of obesity and sex on the energetic cost and preferred speed of walking. Journal of Applied Physiology, 100(2), 390–398.CrossRefGoogle Scholar
  4. Carr, L. J., Dunsiger, S. I., & Marcus, B. H. (2010). Walk Score™ as a global estimate of neighborhood walkability. American Journal of Preventive Medicine, 39(5), 460–463.CrossRefGoogle Scholar
  5. Carr, L. J., Dunsiger, S. I., & Marcus, B. H. (2011). Validation of Walk Score for estimating access to walkable amenities. British Journal of Sports Medicine, 45(14), 1144–1148.CrossRefGoogle Scholar
  6. Crane, R., & Crepeau, R. (1998). Does neighborhood design influence travel? A behavioral analysis of travel diary and GIS data. Transportation Research Part D: Transport and Environment, 3(4), 225–238.CrossRefGoogle Scholar
  7. Diehl, T. (2017). Citizenship, social media, and big data: Current and future research in the social sciences. Social Science Computer Review, 35(1), 3–9.CrossRefGoogle Scholar
  8. Dobesova, Z., & Krivka, T. (2012). Walkability index in the urban planning: A case study in Olomouc City. In J. Burian (Ed.), Advances in spatial planning (pp. 179–196). InTech.Google Scholar
  9. Duncan, D. T., Aldstadt, J., Whalen, J., & Melly, S. J. (2013). Validation of Walk Scores and Transit Scores for estimating neighborhood walkability and transit availability: A small-area analysis. GeoJournal, 78(2), 407–416.CrossRefGoogle Scholar
  10. Duncan, D. T., Aldstadt, J., Whalen, J., Melly, S. J., & Gortmaker, S. L. (2011). Validation of Walk Score® for estimating neighborhood walkability: An analysis of four US metropolitan areas. International Journal of Environmental Research and Public Health, 8(12), 4160–4179.CrossRefGoogle Scholar
  11. Duncan, D. T., Sharifi, M., Melly, S. J., Marshall, R., Sequist, T. D., Rifas-Shiman, S. L., & Taveras, E. M. (2014). Characteristics of walkable built environments and BMI z-scores in children: Evidence from a large electronic health record database. Environmental Health Perspectives, 122(12), 1359–1365. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4256697&tool=pmcentrez&rendertype=abstract
  12. Fan, J. X., Wen, M., & Kowaleski-Jones, L. (2014). An ecological analysis of environmental correlates of active commuting in urban U.S. Health & Place, 30, 242–250.CrossRefGoogle Scholar
  13. Feinerer, I., Hornik, K., & Meyer, D. (2008). Text mining infrastructure in R. Journal of Statistical Software, 25(5), 1–54. http://www.jstatsoft.org/v25/i05/
  14. Fellrnr.com. (2017). Calories burned running and walking. http://fellrnr.com/wiki/Calories_burned_running_and_walking?Weight=164&WeightUnits=Pounds. Last accessed 20 June 2017
  15. Felt, M. (2016). Social media and the social sciences: How researchers employ Big Data analytics. Big Data & Society3(1), 2053951716645828.Google Scholar
  16. Forsyth, A., & Southworth, M. (2008). Cities Afoot—Pedestrians, walkability and urban design. Journal of Urban Design, 13(1), 1–3.CrossRefGoogle Scholar
  17. Foster, S., Knuiman, M., Villanueva, K., Wood, L., Christian, H., & Giles-Corti, B. (2014). Does walkable neighbourhood design influence the association between objective crime and walking? International Journal of Behavioral Nutrition and Physical Activity, 11 (1), 100. http://www.ijbnpa.org/content/11/1/100
  18. Frank, L. D., Sallis, J. F., Saelens, B. E., Leary, L., Cain, K., Conway, T. L., & Hess, P. M. (2010). The development of a walkability index: application to the Neighborhood Quality of Life Study. British Journal of Sports Medicine, 44(13), 924–933.CrossRefGoogle Scholar
  19. Gota, S., Fabian, H. G., Mejia, A. A., & Punte, S. S. (2010). Walkability surveys in Asian cities. Clean Air Initiative for Asian Cities (CAI- Asia), 20. https://www.ictct.net/migrated_2014/ictct_document_nr_663_102A%20Sophie%20Sabine%20Punte%20Walkability%20Surveys%20in%20Asian%20Cities.pdf
  20. Gravel, R., & Béland, Y. (2005). The Canadian Community Health Survey: Mental health and well-being. The Canadian Journal of Psychiatry, 50(10), 573–579.CrossRefGoogle Scholar
  21. Gu, P., Han, Z., Cao, Z., Chen, Y., & Jiang, Y. (2018). Using open source data to measure street walkability and bikeability in China: A case of four cities. Transportation Research Record.  https://doi.org/10.1177/0361198118758652.
  22. Hall, C. M., & Ram, Y. (2018). Measuring the relationship between tourism and walkability? Walk Score and English tourist attractions. Journal of Sustainable Tourism, 9582, 1–18. https://www.tandfonline.com/doi/full/10.1080/09669582.2017.1404607
  23. Handy, S. L., Boarnet, M. G., Ewing, R., & Killingsworth, R. E. (2002). How the built environment affects physical activity: Views from urban planning. American Journal of Preventive Medicine, 23(2 Suppl 1), 64–73.CrossRefGoogle Scholar
  24. Hasan, S., Zhan, X., & Ukkusuri, S. V. (2013). Understanding urban human activity and mobility patterns using large-scale location-based data from online social media. In Proceedings of the 2nd ACM SIGKDD international workshop on urban computing (p. 6). Chicago, Illinois. ACM.Google Scholar
  25. Hirsch, J. A., Roux, A. V. D., Moore, K. A., Evenson, K. R., & Rodriguez, D. A. (2014). Change in walking and body mass index following residential relocation: The multi-ethnic study of atherosclerosis. American Journal of Public Health, 104(3), 49–56.CrossRefGoogle Scholar
  26. Huang, T. T.-K., Harris, K. J., Lee, R. E., Nazir, N., Born, W., & Kaur, H. (2003). Assessing overweight, obesity, diet, and physical activity in college students. Journal of American College Health, 52(2), 83–86. http://www.tandfonline.com/doi/abs/10.1080/07448480309595728
  27. Hung, W. T., Manandhar, A., & Ranasinghege, S. A. (2010). A walkability survey in Hong Kong. In The 12th international conference on mobility and transport for elderly and disabled persons (TRANSED). Hong Kong, China.Google Scholar
  28. Jackson, R. J., & Kochtitzky, C. (2001). Creating a Healthy Environment: The impact of the built environment on public health. Sprawl Watch Clearinghouse Monograph Series. Washington, DC: Public Health and Land Use Planning & Community Design Professionals. Google Scholar
  29. Jun, H.-J., & Hur, M. (2015). The relationship between walkability and neighborhood social environment: The importance of physical and perceived walkability. Applied Geography, 62, 115–124.CrossRefGoogle Scholar
  30. Jurdak, R., Zhao, K., Liu, J., Aboujaoude, M., Cameron, M., & Newth, D. (2015). Understanding human mobility from Twitter. PLoS One, 1–16.  https://doi.org/10.1371/journal.pone.0131469.
  31. Kearney, M. W. (2018). rtweet: Collecting Twitter Data. https://cran.r-project.org/package=rtweet
  32. Keating, X. D., Guan, J., Piñero, J. C., & Bridges, D. M. (2005). A meta-analysis of college students’ physical activity behaviors. Journal of American College Health, 54(2), 116–125.CrossRefGoogle Scholar
  33. Kilpatrick, D. G., Best, C. L., Veronen, L. J., Amick, A. E., Villeponteaux, L. A., & Ruff, G. A. (1985). Mental health correlates of criminal victimization: A random community survey. Journal of Consulting and Clinical Psychology, 53(6), 866–873.CrossRefGoogle Scholar
  34. Kouloumpis, E., Wilson, T., & Moore, J. (2011). Twitter sentiment analysis: The good the bad and the omg! In Proceedings of the fifth international AAAI conference on Weblogs and Social Media (ICWSM 11) (pp. 538–541). http://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/download/2857/3251?iframe=true&width=90%25&height=90%25
  35. Larsson, A. O., and H. Moe. 2011. Studying political microblogging: Twitter users in the 2010 Swedish election campaign. New Media & Society, 14 (5), 729–747.Google Scholar
  36. Leslie, E., Coffee, N., Frank, L., Owen, N., Bauman, A., & Hugo, G. (2007). Walkability of local communities: Using geographic information systems to objectively assess relevant environmental attributes. Health and Place, 13(1), 111–122.CrossRefGoogle Scholar
  37. Litman, T. (2014). Land for vehicles or people? Planetizen. http://www.planetizen.com/node/72454/land-vehicles-or-people. Last accessed 10 Jan 2018.
  38. Litman, T (2018). Evaluating Active Transport Benefits and Costs. Victoria, Canada: Victoria Transport Policy Institute. Google Scholar
  39. Liu, S., & Young, S. D. (2018). A survey of social media data analysis for physical activity surveillance. Journal of Forensic and Legal Medicine, 57, 33–36.  https://doi.org/10.1016/j.jflm.2016.10.019.CrossRefGoogle Scholar
  40. Livi, A. D., & Clifton, K. J. (2004). Issues and methods in capturing pedestrian behaviors, attitudes and perceptions: experiences with a community-based walkability survey. In Transportation research board annual meeting (17pp). Washington, DC.Google Scholar
  41. Lo, R. H. (2009). Walkability: What is it. Journal of Urbanism, 2(2), 145–166.Google Scholar
  42. Loo, B. P. Y., & Lam, W. W. Y. (2012). Geographic accessibility around health care facilities for elderly residents in Hong Kong: A microscale walkability assessment. Environment and Planning B: Planning and Design, 39(4), 629–646.CrossRefGoogle Scholar
  43. Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge University Press. https://nlp.stanford.edu/IR-book/
  44. Matsuo, Y., & Ishizuka, M. (2004). Keyword extraction from a single document using word co-occurrence statistical information. International Journal on Artificial Intelligence Tools, 13(01), 157–169. http://www.worldscientific.com/doi/abs/10.1142/S0218213004001466
  45. McLuhan, M. (1975). McLuhan’ s laws of the media. Technology and Culture, 16(1), 74–78. Published by: The Johns Hopkins University Press and the Society for the History of Technology Stable URL: https://www.jstor.org/stable/3102368
  46. Morstatter, F., Pfeffer, J., & Liu, H. (2014). When is it biased?: assessing the representativeness of twitter's streaming API. In Proceedings of the 23rd international conference on world wide web (pp. 555–556). ACM.Google Scholar
  47. National Center for Education Statistics. (2018). Undergraduate enrollment. https://nces.ed.gov/programs/coe/indicator_cha.asp. Last accessed 23 May 2018.
  48. Pak, A., & Paroubek, P. (2010). Twitter as a Corpus for sentiment analysis and opinion mining. In Seventh conference on international language resources and evaluation (pp. 1320–1326).Google Scholar
  49. Park, S. (2008). Defining, measuring, and evaluating path walkability, and testing its impacts on transit users’ mode choice and walking distance to the station. Berkeley: University of California.Google Scholar
  50. Powell, P., Spears, K., & Rebori, M. (2010). What is obesogenic environment? (pp. 1–2). University of Nevada Cooperative Extension (fact sheet 10–11). Reno, NV: University of Nevada Cooperative Extension.Google Scholar
  51. Princeton University. (2008). 2016 campus plan. http://www.princeton.edu/pr/doc/2006-campus-plan.pdf. Last accessed 1 Dec 2017.
  52. Quercia, D., Aiello, L. M., Schifanella, R., & Davies, A. (2015). The digital life of walkable streets. In Proceedings of the 24th international conference on World Wide Web (pp. 875-884). International World Wide Web Conferences Steering Committee.Google Scholar
  53. R Development Core Team. (2008). R: A language and environment for statistical computing. http://www.r-project.org
  54. Rinker, T. W. (2017). {qdapRegex}: Regular expression removal, extraction, and replacement tools. http://github.com/trinker/qdapRegex
  55. Rinker, T. W. (2018). {textstem}: Tools for stemming and lemmatizing text. http://github.com/trinker/textstem
  56. Robinson, W. S. (1950). Ecological correlations and the behavior of individuals. American Sociological Review, 15(3), 351–357.CrossRefGoogle Scholar
  57. Rundle, A., Neckerman, K. M., Freeman, L., Lovasi, G. S., Purciel, M., Quinn, J., Richards, C., Sircar, N., & Weiss, C. (2009). Neighborhood food environment and walkability predict obesity in New York City. Environmental Health Perspectives, 117(3), 442–447.CrossRefGoogle Scholar
  58. Saaty, R. W. (1987). The analytic hierarchy process-what it is and how it is used. Mathematical Modelling, 9(3–5), 161–176.CrossRefGoogle Scholar
  59. Saaty, T. (1980). The analytic hierarchy process: Planning, priority setting, resources allocation. New York: McGraw-Hill.Google Scholar
  60. Saaty, T. L. (2004). Decision making — the Analytic Hierarchy and Network Processes (AHP/ANP). Journal of Systems Science and Systems Engineering, 13(1), 1–35.CrossRefGoogle Scholar
  61. Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98.CrossRefGoogle Scholar
  62. Saelens, B. E., & Handy, S. L. (2008). Built environment correlates of walking: A review. Medicine and Science in Sports and Exercise, 40(7 Suppl), S550–S566.CrossRefGoogle Scholar
  63. Selvin, H. C. (1958). Durkheim’s suicide and problems of empirical research. American Journal of Sociology, 63(6), 607–619.CrossRefGoogle Scholar
  64. Shen, Y., & Karimi, K. (2016). Urban function connectivity: Characterisation of functional urban streets with social media check-in data. Cities, 55, 9–21.  https://doi.org/10.1016/j.cities.2016.03.013.CrossRefGoogle Scholar
  65. e Silva, J. D. A., De Oña, J., & Gasparovic, S. (2017). The relation between travel behaviour, ICT usage and social networks. The design of a web based survey. Transportation Research Procedia, 24, 515–522.  https://doi.org/10.1016/j.trpro.2017.05.482.
  66. Slater, S. J., Nicholson, L., Chriqui, J., Barker, D. C., Chaloupka, F. J., & Johnston, L. D. (2013). Walkable communities and adolescent weight. American Journal of Preventive Medicine, 44(2), 164–168.CrossRefGoogle Scholar
  67. Statista. (2013). Most-used languages on Twitter as of September 2013. Statista. https://www.statista.com/statistics/267129/most-used-languages-on-twitter/. Last accessed 4 Dec 2018.
  68. Statista. (2018). Leading countries based on number of Twitter users as of October 2018 (in millions). Statista.Google Scholar
  69. Sui, D., & Goodchild, M. (2011). The convergence of GIS and social media: Challenges for GIScience. International Journal of Geographical Information Science, 25(11), 1737–1748.CrossRefGoogle Scholar
  70. Sui, D. Z., & Goodchild, M. F. (2003). A tetradic analysis of GIS and society using McLuhan’s law of the media. The Canadian Geographer, 1(1), 5–17.CrossRefGoogle Scholar
  71. Swinburn, B., Egger, G., & Raza, F. (1999). Dissecting obesogenic environments: the development and application of a framework for identifying and prioritizing environmental interventions for obesity. Preventive Medicine, 29(6), 563–570.CrossRefGoogle Scholar
  72. Trumbo, J. (2000). Essay: seeing science: Research opportunities in the visual communication of science. Science Communication, 21(4), 379–391.CrossRefGoogle Scholar
  73. Tumasjan, A., Sprenger, T., Sandner, P., Welpe, I. (2010). Predicting elections with Twitter: What 140 characters reveal about political sentiment. In Proceedings of the fourth international AAAI conference on Weblogs and Social Media (pp. 178–185). http://www.aaai.org/ocs/index.php/ICWSM/ICWSM10/paper/viewFile/1441/1852
  74. Twitter Inc. (2018). Tweet objects. https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/tweet-object. Last accessed 23 May 2018.
  75. Vargo, J., Stone, B., & Glanz, K. (2012). Google walkability: A new tool for local planning and public health research? Journal of Physical Activity & Health, 9(5), 689–697.CrossRefGoogle Scholar
  76. Walkability Index. (2017). United States environmental protection agency. https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B251AFDD9-23A7-4068-9B27-A3048A7E6012%7D. Last accessed 2 Dec 2018.
  77. Walker, A. (2018). Q1 2018: Twitter now has 336m monthly active users. Memeburn. https://memeburn.com/2018/04/twitter-users-q1-2018/. Last accessed 20 May 2018.
  78. Warburton, D. E. R., Nicol, C. W., & Bredin, S. S. D. (2006). Health benefits of physical activity: the evidence. Canadian Medical Association Journal, 174(6), 801–809.CrossRefGoogle Scholar
  79. Wickham, H. (2018). stringr: Simple, consistent wrappers for common string operations. https://cran.r-project.org/package=stringr
  80. Wikipedia Contributors. (2018). Natural-language processing. https://en.wikipedia.org/w/index.php?title=Natural-language_processing&oldid=843426453
  81. WordArt.com. (2016). https://wordart.com/. Last accessed 20 July 2016.
  82. Yang, W., & Mu, L. (2015). GIS analysis of depression among Twitter users. Applied Geography, 60, 217–223.  https://doi.org/10.1016/j.apgeog.2014.10.016.CrossRefGoogle Scholar
  83. Yang, W., Mu, L., & Shen, Y. (2015). Effect of climate and seasonality on depressed mood among twitter users. Applied Geography, 63, 184–191.  https://doi.org/10.1016/j.apgeog.2015.06.017.CrossRefGoogle Scholar
  84. Yin, L. (2017). Street level urban design qualities for walkability: Combining 2D and 3D GIS measures. Computers, Environment and Urban Systems, 64, 288–296.CrossRefGoogle Scholar
  85. Zhang, X. (2016). Perceived importance and objective measures of built environment walkability of a university campus. https://athenaeum.libs.uga.edu/handle/10724/36572
  86. Zhang, X., & Mu, L. (2019). The perceived importance and objective measurement of walkability in the built environment rating. Environment and Planning B: Urban Analytics and City Science. Advance online publication. https://doi.org/10.1177/2399808319832305Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of GeographyUniversity of GeorgiaAthensUSA

Personalised recommendations