Capacitances in P+N Silicon Pixel Sensors Using 3-D TCAD Simulation Approach

  • Ajay Kumar Srivastava


Science at the European XFEL (X-ray Free Electron Laser) requires precision p+n Si pixel detectors as a first choice which need to withstand a dose of up to 1 GGy of 12 keV X-ray (1016 γ/cm3/pixel) for 3 years operation. The sensors design is an important issue for the satisfactory performance at the XFEL and the noise in the readout electronics of the detector system is crucial parameters that should be minimized so for this we have proposed design of sensor pixel array with an optimum gap for the interpixel and backplane capacitance calculations using Synopsys TCAD commercial simulation program 2010.03. In this letter, we have compared the normalized 2-D and 3-D simulation results on p+n Si pixel detectors with analytical calculations and the observations are presented.



The author would like to thank the XFEL company for support and also would like to thank to the peoples involved in the development of AGPID for XFEL experiment from DESY (Deutsches Elektronen Synchrotron), PSI (Paul Scherer institute), Switzerland and University of Bonn, Germany for constant interest and support. This work was profited from the infrastructure grant of the Helmholtz Alliance “Physics at the Terascale”.


  1. 1.
    Becker, J., Eckstein, D., Klanner, R., Steinbrück, G., on behalf of the AGIPD Consortium: Impact of plasma effects on the performance of silicon sensors at an X-ray FEL. Nucl. Instr. Methods Phys. Res. A. 615(2), 230–236 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Srivastava, A.K., Eckstein, D., Fretwurst, E., Klanner, R., Steinbrück, G.: Numerical modelling of Si sensors for HEP experiments and XFEL. POS (RD09) 019, 2009Google Scholar
  3. 3.
    Srivastava, A.K., et al.: Development of radiation hard Si pixel sensor for the 4th generation photon science experiment at XFEL, (Internal note)Google Scholar
  4. 4.
    Gorfine, G., Hoeferkamp, M., Santistevan, G., Seidel, S.: Capacitance of silicon pixels. Nucl. Instr. Methods Phys. Res. A. 460, 336–351 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Cerdeira, A., Estrada, M.: Analytical expressions for the calculation of pixel detector capacitances. IEEE Trans on Nuclear Science. 44(1), 63–66 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    Synopsys Inc., TCAD software.
  7. 7.
    Chatterji, S., Bhardwaj, A., Ranjan, K., Namrata, Srivastava, A.K., Shivpuri, R.K.: Analysis of interstrip capacitance of Si microstrip detector using simulation approach. Solid State Electron. 47, 1491–1499 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Rohe, T., Hügging, F., Lutz, G., Richter, R.H., Wunstorf, R.: Sensor design for the ATLAS-pixel upgrade. Nucl. Instr. Methods Phys. Res. A. 409, 224–228 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    Dell’ Orso, R.: Recent results for the CMS tracker silicon detectors. CMS Conference Report CMS CR 20001/003Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ajay Kumar Srivastava
    • 1
  1. 1.Department of PhysicsChandigarh UniversityGharuan, MohaliIndia

Personalised recommendations