Development of Radiation Hard p+n Si Pixel Sensors for the European XFEL

  • Ajay Kumar Srivastava


Science at the European XFEL (X-ray Free Electron Laser) requires precision pixel detectors which need to withstand a dose of up to 1 GGy of 12 keV X-ray (1016 γ/cm3/pixel) for 3 years operation. Test structures, e.g. CMOS capacitors and CMOS gated diodes, fabricated by CiS, Erfurt, Germany have been irradiated with synchrotron radiation white light source at DESY DORIS III. Capacitance-voltage (C/V), conductance-voltage (G/V), current-voltage (I/V) and Thermally Depolarization Relaxation Current (TDRC) measurements have been performed. From these measurements oxide charge densities (Nox) and interface densities (Dit), capture cross-sections of Diteff), width of gaussian σrmsit, and energy level Ec-Eit have been extracted and implemented into the semiconductor device simulation program Synopsys TCAD. Results from measurements could be reproduced by TCAD simulation. This experience is used to design radiation tolerant p+n silicon pixel sensors.


  1. 1.
  2. 2.
    Fretwurst, E., et al.: Study of the Radiation Hardness of Silicon Sensors for the XFEL, poster presented at IEEE NSS 2008, Dresden, Germany, Conference record N30–400Google Scholar
  3. 3.
    Zhang, J., et al.: Study of high-dose X-ray radiation damage of Si sensors. Nucl. Instr. Methods Phys. Res. A. 732, 117–121 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Göttlicher, P., et al. (AGIPD collaboration): The Adaptive Gain Integrating Pixel Detector (AGIPD): A Detector for the European XFEL: Development and Status, poster presented at IEEE NSS 2009, Orlando, Florida, USA, N25–239Google Scholar
  5. 5.
  6. 6.
    Gorfine, G., Hoeferkamp, M., Santistevan, G., Seidel, S.: Capacitance of silicon pixels. Nucl. Instr. Methods Phys. Res. A. 460, 336–351 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Cerdeira, A., Estrada, M.: Analytical expressions for the calculation of pixel detector capacitances. IEEE Trans. Nucl. Sci. 44(1), 63–66 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Jens WÜstenfeld: Characterization of ionization induced surface effects for the optimization of silicon detectors for particle physics applications. Ph.D. thesis, University of Dortmund, June 2001Google Scholar
  9. 9.
    Becker, J., Eckstein, D., Klanner, R., Steinbrück, G., on behalf of the AGIPD Consortium: Impact of plasma effects on the performance of silicon sensors at an X-ray FEL. Nucl. Instr. Methods Phys. Res. A. 615(2), 230–236 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Ma, T.P.: Generation and transformation of interface traps in MOS structures. Microelectron. Eng. 22, 197–200 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    Srivastava, A.K., Fretwurst, E., Klanner, R., Perrey, H.: Analysis of electrical characteristics of gated diodes for the XFEL experiment. DESY internal note (within AGIPD collaboration)Google Scholar
  12. 12.
    Srivastava, A.K., Fretwurst, E., Klanner, R.: Numerical modelling of the frequency behaviour of the irradiated MOS test structure. DESY Internal note (within AGIPD collaboration)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ajay Kumar Srivastava
    • 1
  1. 1.Department of PhysicsChandigarh UniversityGharuan, MohaliIndia

Personalised recommendations