Advertisement

Development of Radiation Hard Pixel Detectors for the European XFEL

  • Ajay Kumar Srivastava
Chapter

Abstract

The Linac Coherent Light Source (LCLS) [1] at the SLAC National Accelerator Laboratory, U.S.A. commissioned and operated in 2009. The great Prof. (Dr.) John Madey [2] had invented the Free-Electron Laser at Stanford University, U.S.A. and after 30 years of its invention DESY, Hamburg, Germany has planned to set up a new fourth-generation of hard X-ray sources FEL Experiment for the wide range of challenging applications in the world. The X-ray Free-Electron Lasers (XFEL) provide femtosecond-duration and a high degree of spatial coherence pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities (see Fig. 4.1). With the FEL light, the functional material at an interatomic distance and time scales of an atomic motion [4] can be explored. In the material science, as an example, inducing transient structures using ultrafast low wavelength light pulses that can considerably change material properties.

References

  1. 1.
    Emma, P., et al.: First lasing and operation of an Ångstrom-wavelength free-electron laser. Nat. Photonics. 4(9), 641–647 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Madey, J.M.J.: Stimulated Emission of Bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42(5), 1906 (1971)ADSCrossRefGoogle Scholar
  3. 3.
    Schmüser, P., Dohlus, M., Rossbach, J., Behrens, C.: Free-Electron Lasers in the Ultraviolet and X-Ray Regime: Physical Principles, Experimental Results, Technical Realization. Springer, Berlin (2014)CrossRefGoogle Scholar
  4. 4.
    Chapman, H.N.: Coherent imaging with x-ray free-electron lasers. In: Angst, M., Brückel, T., Richter, D., Zorn, R. (eds.). Scattering Methods for Condensed Matter Research: Towards Novel Applications at Future Sources. Forschungszentrum Jülich (2012)Google Scholar
  5. 5.
    Altarelli, M., et al.: The European X-Ray Free-Electron Laser, Technical design report. DESY, Hamburg (2006)Google Scholar
  6. 6.
  7. 7.
  8. 8.
    Henrich, B., et al.: The adaptive gain integrating pixel detector AGIPD a detector for the European XFEL. Nucl. Instr. Methods A. 633(Supplement 1), S11–S14 (2011)CrossRefGoogle Scholar
  9. 9.
    Mancuso, A.: Conceptual Design Report Scientific Instrument SPB, Technical Report TR-2011-007 (2012)Google Scholar
  10. 10.
    Madsen, A.: Conceptual Design Report Scientific Instrument MID, Technical Report TR-2011-008 (2012)Google Scholar
  11. 11.
    Seibert, M.M., et al.: Single mimivirus particles intercepted and imaged with an X-ray laser. Nature. 469(7332), 78–81 (2012)CrossRefGoogle Scholar
  12. 12.
    Graafsma, H.: Requirements for and development of 2 dimensional X-ray detectors for the european X-ray Free Electron Laser in Hamburg. J. Instrum. 4(12), P12011 (2009)CrossRefGoogle Scholar
  13. 13.
    Becker, J.: Signal development in silicon sensors used for radiation detection. Ph.D. thesis, Universität Hamburg, Hamburg (2010). DESY-THESIS-2010-033Google Scholar
  14. 14.
    Srivastava, A.K., et al.: Numerical modelling of Si sensors for HEP experiments and XFEL (POS RD09) 19 (2010)Google Scholar
  15. 15.
    Zhang, J.: X-ray Radiation Damage Studies and Design of a Silicon Pixel Sensor for Science at the XFEL. Ph.D. thesis, Universität Hamburg, Hamburg (2013). DESY-THESIS-2013-018Google Scholar
  16. 16.
    Poehlsen, T.: Charge Losses in Silicon Sensors and Electric-Field Studies at the Si–SiO2 Interface. Ph.D. thesis, Universität Hamburg, Hamburg (2013). DESY-THESIS-2013-025Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ajay Kumar Srivastava
    • 1
  1. 1.Department of PhysicsChandigarh UniversityGharuan, MohaliIndia

Personalised recommendations