Performance of MCz Si Material for p+nn+ and n+pp+ Si Sensor Design: Status and Development for HL-LHC

  • Ajay Kumar Srivastava


The LARGE HADRON COLLIDER (LHC) at CERN, Geneva is started in 2008 and successfully operating since last ten years. The LHC will be upgraded to HL-LHC in 2026 for the persistence of probing for the new physics at high-energy frontier and thus will reach higher integrated luminosity to 3000 fb−1 (up to 4000 fb−1) by the end of 2037. The bulk radiation damage degrades the electrical performance of the used Si sensors at HL-LHC radiation conditions therefore the Compact Muon Solenoid (CMS) experiments at LHC will require a new CMS tracking detectors for the phase 2 upgrade program at HL-LHC.

The radiation hardness of the Si sensors are challenging task at HL-LHC. In the framework of the CERN RD50 collaboration and Italian SMART project, several R & D has been made for the technological and radiation hard materials point of view for the Si sensors. Current research is on-going for the development of novel Si sensors design for the tracking area of the phase 2 upgrade of the CMS tracker detector (expected in 2026) for the HL-LHC.

It is recently reported that the Magnetic Czochralski (MCz) Si material is a prime candidate for SLHC (now HL-LHC) in the mixed irradiations. The appropriate Si sensors design for this materials after heavy irradiations are technological issue for the long-term performance of Si sensors in terms of less leakage current, high breakdown voltage, tolerable full depletion voltage, and low interstrip capacitance.

In this chapter, we review all of the fruitful results and recent development for MCz-Si material for the HL-LHC and proposed upgradation of Si sensor design for HL-LHC.


  1. 1.
    Fretwurst, E.: Recent advancements in the development of radiation hard semiconductor detectors for S-LHC. Nucl. Instr. Methods Phys. Res. A. A552, 7–19 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Huntinen, M.: SLHC Electronics workshop (2004), CERNGoogle Scholar
  3. 3.
    Lindstrom, G.: Radiation damage in silicon detectors. Nucl. Instr. Methods Phys. Res. A. A512, 30–43 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    RD50 Status Reports CERN-LHCC-2003-2004-2005-2007 [Online]. Available
  5. 5.
    Moll, M.: Ph.D. thesis. Radiation Damage in Silicon Particle Detectors, University of Hamburg, Germany, 1999, DESY-THESIS-1999-40, ISSN 1435-8085Google Scholar
  6. 6.
    Kramberger, G., Cindro, V., Dolenc, I., Mandic, I., Mikuz, M., Zavrtanik, M.: Performance of silicon pad detectors after mixed irradiations with neutrons and fast charged hadrons. Nucl. Instr. Methods Phys. Res. A. 609, 142–148 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Militaru, O. (CEC collaboration): Simulation of electrical paramaters of new design of SLHC silicon sensors for large radii. Nucl. Instr. Methods Phys. Res. A 617, 563–564 (2010)Google Scholar
  8. 8.
    Moscatelli, F., Santocchia, A., Passeri, D., Bilei, G.M., MacEvoy, B.C., Hall, G., Placidi, P.: An enhanced approach to numerical modelling of heavily irradiated silicon devices. Nucl. Instr. Methods Phys Res. B. 186, 171–175 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Passeri, D., Baroncini, M., Ciampolini, P., Bilei, G.M., Santocchia, A., Checchucci, B., Fiandrini, E.: TCAD-based analysis of radiation hardness in silicon detectors. IEEE Trans. Nucl. Sci. 45(3), (1998)ADSCrossRefGoogle Scholar
  10. 10.
    Passeri, D., Ciampolini, P., Bilei, G., Moscatelli, F.: Comprehensive modeling of bulk-damage effects in silicon radiation detectors. IEEE Trans. Nucl. Sci. 48, 1688–1693 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Moscatelli, F., Santocchia, A., Passeri, D., Bilei, G.M., MacEvoy, B.C., Hall, G., Placidi, P.: An enhanced approach to numerical modelling of heavily irradiated silicon devices. Nucl. Instr. Methods Phys Res. B. 186, 171–175 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Srivastava, A.K., Eckstein, D., Fretwurst, E., Klanner, R., Steinbrück, G.: Numerical modelling of the Si sensors for the HEP experiments and XFEL. Presented at RD09 conference on 30 September – 02 October 2009Google Scholar
  13. 13.
    Pintilie, I., Fretwurst, E., Lindström, G.: Cluster related hole trap with enhanced-field emission – the source for long term annealing in hadron irradiated Si diodes. Appl. Phys. Lett. 92, 024101 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Lang, D.V.: Bräunlich, P. (ed.): Thermally Stimulated Relaxation in Solids, vol. 179, pp. 3–128. Springer, BerlinGoogle Scholar
  15. 15.
    Synopsys, Inc., TCAD software. URL http:
  16. 16.
    Affolder, A., et al.: Silicon detectors for the sLHC. Nucl. Instr. Methods Phys. Res. A, 658(1) (1 December 2011)Google Scholar
  17. 17.
    Casse, G.: Overview of the recent activities of the RD50 collaboration on radiation hardening of semiconductor detectors for the sLHC. NIMA. 598, 54–60 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Chatterji, S., Bhardwaj, A., Ranjan, K., Namrata, Srivastava, A.K., Shivpur, R.K.: Analysis of interstrip capacitance of Si microstrip detector using simulation approach. Solid State Electron. 47(9), 1491 (2003)ADSCrossRefGoogle Scholar
  19. 19.
  20. 20.
    Apollinari, G., et al.: High-Luminosity Large Hadron Collider (HLLHC), technical design report v. 0.1. CERN, Tech. Rep. CERN-2017-007-M (2017)Google Scholar
  21. 21.
    The High Luminosity LHC (HL-LHC) project. [Online] Available
  22. 22.
    Moll, M.: Displacement damage in silicon detectors for high energy physics. IEEE Trans. Nucl. Sci. 65(8), 1561–1582 (2018). ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ajay Kumar Srivastava
    • 1
  1. 1.Department of PhysicsChandigarh UniversityGharuan, MohaliIndia

Personalised recommendations