Multi-actions of Microglia

  • Célestine BrunoisEmail author
  • Laurence Ris
Part of the Contemporary Clinical Neuroscience book series (CCNE)


Microglia designate the innate immune cells of the central nervous system (CNS). Their morphology is closely related to their function, from the highly ramified resting phenotype in the healthy brain to the amoeboid-like morphology of the activated typical state of pathological conditions. Indeed, microglial cells act as resident macrophages of the brain in order to respond to injury or pathogens. Recent studies have underlined the function of microglia in physiological conditions, especially via the secretion of several cytokines which have an important impact on synaptic plasticity and cognition. We will discuss the origin, the discovery, and the different activation states of microglia. We will also review the current knowledge about the functions of microglia during CNS development, immune surveillance and their implication in neuronal networks and synaptic plasticity in both physiological and pathological conditions. Microglia could represent a genuine potential therapeutic target in the context of neuroimmune diseases.


Resident macrophages Cytokines Synaptic plasticity Neuroinflammation Phagocytosis 



11C-1-(2-chlorophenyl)-N-[11C]methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide


Alzheimer’s disease


Α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid


Antigen-presenting cell


Arginase 1


Adenosine triphosphate

Amyloid beta


Blood-brain barrier


Brain-derived neurotrophic factor


Ca2+/calmodulin-dependent protein kinase


Chemokine ligand


Chemokine receptor


Cluster of differentiation


Central nervous system




Colony-stimulating factor-1


C-X3-C chemokine ligand 1


C-X3-C chemokine receptor 1


Damage-associated molecular patterns


DNAX-activating protein of 12 kDa


Dendritic cell


Experimental autoimmune encephalitis


Enhanced green fluorescent protein


Extracellular-signal-regulated kinase


Γ-Aminobutyric acid


Glutamate decarboxylase 65




Glial cell-derived neurotrophic factor


Green fluorescent protein


GluR2 subunit of AMPA receptor


Ionised calcium-binding adapter molecule 1




Interferon gamma


Insulin-like growth factor-1




Inducible nitric oxide synthase


Induced pluripotent stem cells




Long-term potentiation


Lymphocyte Antigen 6C


Mitogen-activated protein kinase


Macrophage colony-stimulating factor

MHC class II

Major histocompatibility complex class II


Multiple sclerosis


4-Methyl-6-phenyl-3-(4-pyrimidin-2-ylpiperazin-1-yl)pyridazine (minozac)


Nicotinamide adenine dinucleotide phosphate


Nuclear factor kappa B


Nerve growth factor




Nitric oxide


NR2B subunit of NMDA receptor


Purinergic receptor P2Y 12


Pathogen-associated molecular patterns


Parkinson’s disease


Positron-emission tomography


Phosphoinositide 3-kinase


Protein kinase A


Protein kinase C


Phospholipase C gamma


Postsynaptic density 95


Reactive oxygen species


Transforming growth factor beta


Transmembrane protein 119


Tumour necrosis factor alpha


Triggering receptor expressed on myeloid cells 2


Tropomyosin receptor kinase B


Translocator protein


  1. 1.
    Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, Yeromin AV, Scarfone VM, Marsh SE, Fimbres C, et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 2017;94:278–293.e9.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Achucarro N. Cellules allongées et Stäbchenzellen: cellules neurogliques et cellules granulo-adipeuses à la corne dammon du lapin. Trab Lab Invest Biol Univ Madrid. 1909;4:2–15.Google Scholar
  3. 3.
    Achúcarro N. Nuevo método para el estudio de la neuroglia y del tejido conjuntivo. Bol Soc Esp Biol. 1911;1(7):139–41.Google Scholar
  4. 4.
    Achucarro N. Notas sobre la estructura y funciones de la neuroglia y en particular de la neuroglia de la corteza cerebral humana. Trab Lab Invest Biol Univ Madrid. 1913;3:1–31.Google Scholar
  5. 5.
    Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FMV. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci. 2007;10:1538–43.PubMedCrossRefGoogle Scholar
  6. 6.
    Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FMV. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14:1142–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Almeida CG, Tampellini D, Takahashi RH, Greengard P, Lin MT, Snyder EM, Gouras GK. Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiol Dis. 2005;20:187–98.PubMedCrossRefGoogle Scholar
  8. 8.
    Aloisi F. Immune function of microglia. Glia. 2001;36:165–79.PubMedCrossRefGoogle Scholar
  9. 9.
    Arcuri C, Mecca C, Bianchi R, Giambanco I, Donato R. The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS. Front Mol Neurosci. 2017;10:191.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y, Richardson P, Tipton T, Chapman MA, Riecken K, Beccari S, et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep. 2017;18:391–405.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Avital A, Goshen I, Kamsler A, Segal M, Iverfeldt K, Richter-Levin G, Yirmiya R. Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus. 2003;13:826–34.PubMedCrossRefGoogle Scholar
  12. 12.
    Bachstetter AD, Zhou Z, Rowe RK, Xing B, Goulding DS, Conley AN, Sompol P, Meier S, Abisambra JF, Lifshitz J, et al. MW151 inhibited IL-1β levels after traumatic brain injury with no effect on microglia physiological responses. PLoS One. 2016;11:e0149451.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Bilbo SD, Schwarz JM. The immune system and developmental programming of brain and behavior. Front Neuroendocrinol. 2012;33:267–86.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Brochard V, Combadière B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay J-M, et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Investig. 2009;119(1):182–92.PubMedGoogle Scholar
  15. 15.
    Bruttger J, Karram K, Wörtge S, Regen T, Marini F, Hoppmann N, Klein M, Blank T, Yona S, Wolf Y, et al. Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity. 2015;43:92–106.PubMedCrossRefGoogle Scholar
  16. 16.
    Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, et al. Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17:131–43.PubMedCrossRefGoogle Scholar
  17. 17.
    Clausen F, Hånell A, Björk M, Hillered L, Mir AK, Gram H, Marklund N. Neutralization of interleukin-1β modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice. Eur J Neurosci. 2009;30:385–96.PubMedCrossRefGoogle Scholar
  18. 18.
    Coull JAM, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438:1017–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Di Filippo M, Sarchielli P, Picconi B, Calabresi P. Neuroinflammation and synaptic plasticity: theoretical basis for a novel, immune-centred, therapeutic approach to neurological disorders. Trends Pharmacol Sci. 2008;29:402–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood. 2010;116:829–40.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Fenn AM, Hall JCE, Gensel JC, Popovich PG, Godbout JP. IL-4 signaling drives a unique arginase+/IL-1 + microglia phenotype and recruits macrophages to the inflammatory CNS: consequences of age-related deficits in IL-4R after traumatic spinal cord injury. J Neurosci. 2014;34:8904–17.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ferretti MT, Merlini M, Späni C, Gericke C, Schweizer N, Enzmann G, Engelhardt B, Kulic L, Suter T, Nitsch RM. T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer’s disease-like cerebral amyloidosis. Brain Behav Immun. 2016;54:211–25.PubMedCrossRefGoogle Scholar
  23. 23.
    Füger P, Hefendehl JK, Veeraraghavalu K, Wendeln A-C, Schlosser C, Obermüller U, Wegenast-Braun BM, Neher JJ, Martus P, Kohsaka S, et al. Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat Neurosci. 2017;20:1371–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19:71–82.PubMedCrossRefGoogle Scholar
  25. 25.
    Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Front Cell Neurosci. 2013;7:45.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Gomez-Nicola D, Perry VH. Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. Neuroscientist. 2015;21:169–84.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    González H, Elgueta D, Montoya A, Pacheco R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol. 2014;274:1–13.PubMedCrossRefGoogle Scholar
  29. 29.
    Goshen I, Kreisel T, Ounallah-Saad H, Renbaum P, Zalzstein Y, Ben-Hur T, Levy-Lahad E, Yirmiya R. A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology. 2007;32:1106–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Goverman J. Autoimmune T cell responses in the central nervous system. Nat Rev Immunol. 2009;9:393–407.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Haenseler W, Sansom SN, Buchrieser J, Newey SE, Moore CS, Nicholls FJ, Chintawar S, Schnell C, Antel JP, Allen ND, et al. A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response. Stem Cell Reports. 2017;8:1727–42.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hein AM, Stasko MR, Matousek SB, Scott-McKean JJ, Maier SF, Olschowka JA, Costa ACS, O’Banion MK. Sustained hippocampal IL-1β overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav Immun. 2010;24:243–53.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Helms S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev. 2004;9:259–74.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Heo J-H, Lee S-T, Chu K, Oh MJ, Park H-J, Shim J-Y, Kim M. An open-label trial of Korean red ginseng as an adjuvant treatment for cognitive impairment in patients with Alzheimers disease. Eur J Neurol. 2008;15:865–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Hirasawa T, Ohsawa K, Imai Y, Ondo Y, Akazawa C, Uchino S, Kohsaka S. Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res. 2005;81:357–62.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Horti AG, Naik R, Foss CA, Minn I, Misheneva V, Du Y, Wang Y, Mathews WB, Wu Y, Hall A, et al. PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc Natl Acad Sci. 2019;116:1686–91.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Jung J-S, Shin JA, Park E-M, Lee J-E, Kang Y-S, Min S-W, Kim D-H, Hyun J-W, Shin C-Y, Kim H-S. Anti-inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide-stimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression: anti-inflammatory mechanism of Rh1 in brain. J Neurochem. 2010;115:1668–80.PubMedCrossRefGoogle Scholar
  38. 38.
    Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol. 2000;20:4106–14.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Hölscher C, et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci. 2013;16:273–80.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kivisäkk P, Imitola J, Rasmussen S, Elyaman W, Zhu B, Ransohoff RM, Khoury SJ. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann Neurol. 2009;65:457–69.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, Hirakawa A, Takeuchi H, Suzumura A, Ishiguro N, et al. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis. 2013;4:e525.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Konefal SC, Stellwagen D. Tumour necrosis factor-mediated homeostatic synaptic plasticity in behavioural models: testing a role in maternal immune activation. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160160.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kotter MR. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci. 2006;26:328–32.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K, Shibuya M, Saya H, Suda T. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med. 2009;206:1089–102.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kumar A, Rinwa P, Dhar H. Microglial inhibitory effect of ginseng ameliorates cognitive deficits and neuroinflammation following traumatic head injury in rats. Inflammopharmacology. 2014;22:155–67.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kumar A, Alvarez-Croda D-M, Stoica BA, Faden AI, Loane DJ. Microglial/macrophage polarization dynamics following traumatic brain injury. J Neurotrauma. 2016;33:1732–50.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Lampron A, Larochelle A, Laflamme N, Préfontaine P, Plante M-M, Sánchez MG, Yong VW, Stys PK, Tremblay M-È, Rivest S. Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J Exp Med. 2015;212:481–95.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lawson LJ, Perry VH, Gordon S. Turnover of resident microglia in the normal adult mouse brain. Neuroscience. 1992;48:405–15.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Lee MS, Yang EJ, Kim J-I, Ernst E. Ginseng for cognitive function in Alzheimer’s disease: a systematic review. J Alzheimers Dis. 2009;18:339–44.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Lewitus GM, Pribiag H, Duseja R, St-Hilaire M, Stellwagen D. An adaptive role of TNF in the regulation of striatal synapses. J Neurosci. 2014;34:6146–55.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Li T, Pang S, Yu Y, Wu X, Guo J, Zhang S. Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain. 2013;136:3578–88.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Li Y, Du X, Liu C, Wen Z, Du J. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell. 2012;23:1189–202.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Lindberg OR, Brederlau A, Kuhn HG. Epidermal growth factor treatment of the adult brain subventricular zone leads to focal microglia/macrophage accumulation and angiogenesis. Stem Cell Reports. 2014;2:440–8.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Liu X-G, Zhou L-J. Long-term potentiation at spinal C-fiber synapses: a target for pathological pain. Curr Pharm Des. 2014;21:895–905.CrossRefGoogle Scholar
  55. 55.
    Liu L, Hoang-Gia T, Wu H, Lee M-R, Gu L, Wang C, Yun B-S, Wang Q, Ye S, Sung C-K. Ginsenoside Rb1 improves spatial learning and memory by regulation of cell genesis in the hippocampal subregions of rats. Brain Res. 2011;1382:147–54.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Liu Y, Zhou L-J, Wang J, Li D, Ren W-J, Peng J, Wei X, Xu T, Xin W-J, Pang R-P, et al. TNF-α differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci. 2017;37:871–81.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008;13:453–61.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    McFarland HF, Martin R. Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol. 2007;8:913–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Moore AH, Wu M, Shaftel SS, Graham KA, O’Banion MK. Sustained expression of interleukin-1β in mouse hippocampus impairs spatial memory. Neuroscience. 2009;164:1484–95.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Muffat J, Li Y, Yuan B, Mitalipova M, Omer A, Corcoran S, Bakiasi G, Tsai L-H, Aubourg P, Ransohoff RM, et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med. 2016;22:1358–67.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Ong W-Y. Protective effects of ginseng on neurological disorders. Front Aging Neurosci. 2015;7:129.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states: microglia bioenergetics with acute polarization. Br J Pharmacol. 2016;173:649–65.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Pandya H, Shen MJ, Ichikawa DM, Sedlock AB, Choi Y, Johnson KR, Kim G, Brown MA, Elkahloun AG, Maric D, et al. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat Neurosci. 2017;20:753–9.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456–8.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, Lafaille JJ, Hempstead BL, Littman DR, Gan W-B. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013;155:1596–609.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98:1154–62.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, Colonna M, Panina-Bordignon P. Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol. 2007;37:1290–301.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Politis M. Imaging of microglia in patients with neurodegenerative disorders. Front Pharmacol. 2012;3:96.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Pribiag H, Stellwagen D. TNF- downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABAA receptors. J Neurosci. 2013;33:15879–93.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ramón y Cajal S. Algo sobre la significación fisiológica de la neuroglia. Revista Trimestral Micrografía. 1897;1:3–47.Google Scholar
  72. 72.
    Ramón y Cajal S. Contribución al conocimiento de la neuroglia del cerebro humano. Trab Lab Invest Biol XI. 1913;11:255–315.Google Scholar
  73. 73.
    Réu P, Khosravi A, Bernard S, Mold JE, Salehpour M, Alkass K, Perl S, Tisdale J, Possnert G, Druid H, et al. The lifespan and turnover of microglia in the human brain. Cell Rep. 2017;20:779–84.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Rex CS, Lin C-Y, Kramar EA, Chen LY, Gall CM, Lynch G. Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus. J Neurosci. 2007;27:3017–29.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Reynolds AD, Banerjee R, Liu J, Gendelman HE, Lee Mosley R. Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson’s disease. J Leukoc Biol. 2007;82:1083–94.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Río-Hortega P. El “tercer elemento de los centros nerviosos”. IV. Poder fagocitario y movilidad de la microglía. Bol Soc Esp Biol. 1919;VIII:155–66.Google Scholar
  77. 77.
    Río-Hortega P. El “tercer elemento” de los centros nerviosos. III. Naturaleza probable de la microglía. Bol Soc Esp Biol. 1919;VIII:108–15.Google Scholar
  78. 78.
    Río-Hortega P. El “tercer elemento” de los centros nerviosos. I. La microglía en estado normal. II. Intervención de la microglía en los procesos patológicos (células en bastoncito y cuerpos gránulo-adiposos). Bol. Soc. Esp. Biol. 1919;VIII:69–109.Google Scholar
  79. 79.
    Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA, Weeber EJ, Bickford PC, Gemma C. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci. 2011;31:16241–50.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Rymo SF, Gerhardt H, Wolfhagen Sand F, Lang R, Uv A, Betsholtz C. A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLoS One. 2011;6:e15846.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Satoh J, Kino Y, Asahina N, Takitani M, Miyoshi J, Ishida T, Saito Y. TMEM119 marks a subset of microglia in the human brain: human microglial marker TMEM119. Neuropathology. 2016;36:39–49.PubMedCrossRefGoogle Scholar
  82. 82.
    Scott G, Zetterberg H, Jolly A, Cole JH, De Simoni S, Jenkins PO, Feeney C, Owen DR, Lingford-Hughes A, Howes O, et al. Minocycline reduces chronic microglial activation after brain trauma but increases neurodegeneration. Brain. 2018;141:459–71.PubMedCrossRefGoogle Scholar
  83. 83.
    Seo J-W, Yang E-J, Kim SH, Choi I-H. An inhibitory alternative splice isoform of Toll-like receptor 3 is induced by type I interferons in human astrocyte cell lines. BMB Rep. 2015;48:696–701.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Sheridan GK, Murphy KJ. Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open Biol. 2013;3:–130181.Google Scholar
  85. 85.
    Smith AM, Dragunow M. The human side of microglia. Trends Neurosci. 2014;37:125–35.PubMedCrossRefGoogle Scholar
  86. 86.
    Spulber S, Mateos L, Oprica M, Cedazo-Minguez A, Bartfai T, Winblad B, Schultzberg M. Impaired long term memory consolidation in transgenic mice overexpressing the human soluble form of IL-1ra in the brain. J Neuroimmunol. 2009;208:46–53.PubMedCrossRefGoogle Scholar
  87. 87.
    Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF, Bassil R, Croci DO, Cerliani JP, Delacour D, et al. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity. 2012;37:249–63.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Stellwagen D. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci. 2005;25:3219–28.PubMedCrossRefGoogle Scholar
  89. 89.
    Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-alpha. Nature. 2006;440:1054–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Streit WJ, Xue Q-S, Tischer J, Bechmann I. Microglial pathology. Acta Neuropathol Commun. 2014;2:142.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Takahashi K, Rochford CDP, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med. 2005;201:647–57.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med. 2007;4:e124.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Thornton P, Pinteaux E, Gibson RM, Allan SM, Rothwell NJ. Interleukin-1-induced neurotoxicity is mediated by glia and requires caspase activation and free radical release. J Neurochem. 2006;98:258–66.PubMedCrossRefGoogle Scholar
  94. 94.
    Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, Yamashita T. Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci. 2013;16:543–51.PubMedCrossRefGoogle Scholar
  95. 95.
    Vezzani A, Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology. 2015;96:70–82.PubMedCrossRefGoogle Scholar
  96. 96.
    Vivash L, OBrien TJ. Imaging microglial activation with TSPO PET: lighting up neurologic diseases? J Nucl Med. 2016;57:165–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci. 2009;29:3974–80.PubMedCrossRefGoogle Scholar
  98. 98.
    Wakselman S, Bechade C, Roumier A, Bernard D, Triller A, Bessis A. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J Neurosci. 2008;28:8138–43.PubMedCrossRefGoogle Scholar
  99. 99.
    Wall AM, Mukandala G, Greig NH, O’Connor JJ. Tumor necrosis factor-α potentiates long-term potentiation in the rat dentate gyrus after acute hypoxia: TNF-α Increases LTP Post Hypoxia. J Neurosci Res. 2015;93:815–29.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Walter L, Neumann H. Role of microglia in neuronal degeneration and regeneration. Semin Immunopathol. 2009;31:513–25.PubMedCrossRefGoogle Scholar
  101. 101.
    Wang G, Zhang J, Hu X, Zhang L, Mao L, Jiang X, Liou AK-F, Leak RK, Gao Y, Chen J. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J Cereb Blood Flow Metab. 2013;33:1864–74.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Wang L, Pavlou S, Du X, Bhuckory M, Xu H, Chen M. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegener. 2019;14:2.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, Exiga M, Vadisiute A, Raggioli A, Schertel A, et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun. 2018;9:1228.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Wlodarczyk A, Løbner M, Cédile O, Owens T. Comparison of microglia and infiltrating CD11c+ cells as antigen presenting cells for T cell proliferation and cytokine response. J Neuroinflammation. 2014;11:57.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Wu Y-C, Williamson R, Li Z, Vicario A, Xu J, Kasai M, Chern Y, Tongiorgi E, Baraban JM. Dendritic trafficking of brain-derived neurotrophic factor mRNA: regulation by translin-dependent and -independent mechanisms: dendritic trafficking of BDNF mRNA. J Neurochem. 2011;116:1112–21.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Wu X, Hsuchou H, Kastin AJ, Mishra PK, Pan W. Upregulation of astrocytic leptin receptor in mice with experimental autoimmune encephalomyelitis. J Mol Neurosci. 2013;49:446–56.PubMedCrossRefGoogle Scholar
  107. 107.
    Yang L, Zhang J, Zheng K, Shen H, Chen X. Long-term ginsenoside Rg1 supplementation improves age-related cognitive decline by promoting synaptic plasticity associated protein expression in C57BL/6J mice. J Gerontol Ser A Biol Med Sci. 2014;69A:282–94.CrossRefGoogle Scholar
  108. 108.
    Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 2011;25:181–213.PubMedCrossRefGoogle Scholar
  109. 109.
    Yona S, Kim K-W, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38:79–91.PubMedCrossRefGoogle Scholar
  110. 110.
    Ziehn MO, Avedisian AA, Tiwari-Woodruff S, Voskuhl RR. Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE. Lab Investig. 2010;90:774–86.PubMedCrossRefGoogle Scholar
  111. 111.
    Zheng K, An JJ, Yang F, Xu W, Xu Z-QD, Wu J, Hokfelt TGM, Fisahn A, Xu B, Lu B. TrkB signaling in parvalbumin-positive interneurons is critical for gamma-band network synchronization in hippocampus. Proc Natl Acad Sci. 2011;108:17201–6.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Zong Y, Ai Q-L, Zhong L-M, Dai J-N, Yang P, He Y, Sun J, Ling E-A, Lu D. Ginsenoside Rg1 attenuates lipopolysaccharide-induced inflammatory responses via the phospholipase C-γ1 signaling pathway in murine BV-2 microglial cells. Curr Med Chem. 2012;19:770–9.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Neuroscience, Faculty of Medicine and PharmacyUniversity of MonsMonsBelgium
  2. 2.UMONS Research Institute for Health Sciences and TechnologyMonsBelgium

Personalised recommendations