Advertisement

Central Nervous System Vasculitis and Related Diseases

  • Hiroshi MitomaEmail author
  • Mario Manto
  • Jordi Gandini
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Central nervous system (CNS) vasculitis can be classified into (1) primary vasculitis limited to the CNS and (2) secondary CNS vasculitis which is either a manifestation of systemic vasculitis or a complication associated with certain specific pathologies, such as infection (viral, bacterial, fungal), neoplasm, drug, connective tissue diseases (e.g., systemic lupus erythematous, rheumatoid arthritis, Sjögren syndrome), and sarcoidosis. Isolated vasculitis limited to the CNS is known as primary angiitis of the CNS (PACNS). PACNS is associated with various clinical neurological symptoms. There is no specific test for PACNS at present, rendering the diagnosis difficult. The diagnosis is currently based on the following features: (1) exclusion of other pathologies associated with CNS vasculitis, such as infection, neoplasm, drug, and systemic disease-mediated vasculitis; (2) identification of segmental arterial wall narrowing “vessel beading,” followed by poststenotic dilatation; and (3) the pathological findings of granulomatosis, lymphocytic, or acute necrotizing patterns. The first line of induction therapy is the combination of corticosteroids and cyclophosphamide, followed by maintenance therapy using mycophenolate mofetil, azathioprine, and methotrexate. Involvement of larger or proximal cerebral vessels requires aggressive treatment. The diagnosis of secondary vasculitis in the CNS implies the identification of exogenous agents or conditions. Withdrawal/removal of the agents or treatment of the underlying conditions often leads to improvements in vasculitis. Due to phenotypic overlap between the various CNS vasculitis, a comprehensive work-up is often required.

Keywords

Central nervous system vasculitis Primary angiitis of the central nervous system Primary central nervous vasculitis Systemic vasculitis Neuropsychiatric SLE CNS sarcoidosis 

References

  1. 1.
    Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised international chapel Hill conference nomenclature of vasculitides. Arthritis Rheum. 2013;65:1–11.PubMedCrossRefGoogle Scholar
  2. 2.
    Calabrese LH, Duna GF, Lie JT. Vasculitis in the central nervous system. Arthritis Rheum. 1997;40:1189–201.PubMedCrossRefGoogle Scholar
  3. 3.
    Hajj-Ali RA, Singhal AB, Benseler S, et al. Primary angiitis of the CNS. Lancet Neurol. 2011;10:561–72.PubMedCrossRefGoogle Scholar
  4. 4.
    Beuker C, Schmidt A, Strunk D, Sporns PB, Wiendl H, Meuth SG, Minnerup J. Primary angiitis of the central nervous system: diagnosis and treatment. Ther Adv Neurol Disord. 2018;11:1756286418785071.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Limaye K, Samaniego EA, Adams HP Jr. Diagnosis and treatment of primary nervous system angiitis. Curr Treat Options Neurol. 2018;20:38.PubMedCrossRefGoogle Scholar
  6. 6.
    Giannini C, Salvarani C, Hunder G, et al. Primary central nervous system vasculitis: pathology and mechanisms. Acta Neuropathol. 2012;123:759–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Harbitz F. Unknown forms of arteritis, with special reference to their relation to syphilitic arteritis and periarteritis nodosa. Am J Med Sci. 1922;163:250–71.CrossRefGoogle Scholar
  8. 8.
    Molloy ES, Hajj-Ali RA. Primary angiitis of the central nervous system. Curr Treat Options Neurol. 2007;9:169–75.PubMedCrossRefGoogle Scholar
  9. 9.
    Salvarani C, Brown RD Jr, Christianson T, et al. Primary central nervous system vasculitis: analysis of 101 patients. Ann Neurol. 2007;62:442–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Calabrese LH, Mallek JA. Primary angiitis of the central nervous system: report of 8 new cases, review of the literature, and proposal for diagnostic criteria. Medicine. 1988;67:20–39.PubMedCrossRefGoogle Scholar
  11. 11.
    Birnbaum J, Hellmann DB. Primary angiitis of the central nervous system. Arch Neurol. 2009;66:704–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Salvarani C, Brown RD Jr, Christianson T, et al. An update of the Mayo Clinic cohort of patients with adult primary central nervous system vasculitis: description of 163 patients. Medicine. 2015;94:e738.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Salvarani C, Brown RD, Christianson TJ, et al. Adult primary central nervous system vasculitis treatment and course: analysis of one hundred sixty-three patients. Arthritis Rheum. 2015;67:1637–45.CrossRefGoogle Scholar
  14. 14.
    Berlit P, Kraemer M. Cerebral vasculitis in adults: what are the steps in order to establish the diagnosis? Red flags and pitfalls. Clin Exp Immunol. 2014;175:419–24.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Matar RK, Alshamsan G, Alasaleh S, et al. New onset refractory status epilepticus due to primary angiitis of the central nervous system. Epilepsy Behav Case Rep. 2017;8:100–4.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Miller DV, Salvarani C, Hunder GG, et al. Biopsy findings in primary angiitis of the central nervous system. Am J Surg Pathol. 2009;33:35–43.PubMedCrossRefGoogle Scholar
  17. 17.
    Alrawi A, Trobe JD, Blaivas M, Musch DC. Brain biopsy in primary angiitis of the central nervous system. Neurology. 1999;53:858.PubMedCrossRefGoogle Scholar
  18. 18.
    Scolding NJ, Joseph F, Kirby PA, et al. Aβ-related angiitis: primary angiitis of the central nervous system associated with cerebral amyloid angiopathy. Brain. 2005;128:500–15.PubMedCrossRefGoogle Scholar
  19. 19.
    Salvarani C, Brown RD, Calamia KT, et al. Primary central nervous system vasculitis with prominent leptomeningeal enhancement: a subset with a benign outcome. Arthritis Rheum. 2008;58:595–603.PubMedCrossRefGoogle Scholar
  20. 20.
    Eng JA, Frosch MP, Choi K, Rebeck GW, Greenberg SM. Clinical manifestations of cerebral amyloid angiopathy-related inflammation. Ann Neurol. 2004;55:250–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Hajj-Ali RA, Calabrese LH. Diagnosis and classification of central nervous system vasculitis. J Autoimmun. 2014;48:149–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Iwase T, Ojika K, Mitake S, et al. Involvement of CD45RO+ T lymphocyte infiltration in a patient with primary angiitis of the central nervous system restricted to small vessels. Eur Neurol. 2001;45:184–18.PubMedCrossRefGoogle Scholar
  23. 23.
    Thomas L, Davidson M, McCluskey RT. Studies of PPLO infection. J Exp Med. 1966;123:897–912.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Arthur G, Margolis G. Mycoplasma-like structures in granulomatous angiitis of the central nervous system. Case reports with light and electron microscopic studies. Arch Pathol Lab Med. 1977;101:382–7.PubMedGoogle Scholar
  25. 25.
    Nagel MA, Cohrs RJ, Mahalingam R, et al. The varicella zoster virus vasculopathies. Clinical, CSF, imaging, and virologic features. Neurology. 2008;70:853–60.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Thom V, Schmid S, Gelderblom M, et al. IL-17 production by CSF lymphocytes as a biomarker for cerebral vasculitis. Neurol Neuroimmunol Neuroinflamm. 2016;3:e214.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Küker W, Gaertner S, Nägele T, et al. Vessel wall contrast enhancement: a diagnostic sign of cerebral vasculitis. Cerebrovasc Dis. 2008;26:23–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Swartz RH, Bhuta SS, Farb RI, et al. Intracranial arterial wall imaging using high resolution 3-tesla contrast-enhanced MRI. Neurology. 2009;72:627–34.PubMedCrossRefGoogle Scholar
  29. 29.
    Mandell DM, Matouk CC, Farb RI, et al. Vessel wall MRI to differentiate between reversible cerebral vasoconstriction syndrome and central nervous system vasculitis: preliminary results. Stroke. 2012;43:860–2.PubMedCrossRefGoogle Scholar
  30. 30.
    Berlit P. Primary angiitis of the CNS–an enigma that needs world-wide efforts to be solved. Eur J Neurol. 2009;16:10–1.PubMedCrossRefGoogle Scholar
  31. 31.
    Zuccoli G, Pipitone N, Haldipur A, et al. Imaging findings in primary central nervous system vasculitis. Clin Exp Rheumatol. 2011;29:S104.PubMedGoogle Scholar
  32. 32.
    Swartz RH, Bhuta SS, Farb RI, et al. Intracranial arterial wall imaging using highresolution 3-tesla contrast-enhanced MRI. Neurology. 2009;72:627–34.PubMedCrossRefGoogle Scholar
  33. 33.
    Alhalabi M, Moore PM. Serial angiography in isolated angiitis of the central nervous system. Neurology. 1994;44:1221.PubMedCrossRefGoogle Scholar
  34. 34.
    Duna GF, Calabrese LH. Limitations of invasive modalities in the diagnosis of primary angiitis of the central nervous system. J Rheumatol. 1995;22:662–7.PubMedGoogle Scholar
  35. 35.
    Zuber M. Isolated angiitis of the central nervous system. Uncom Cau Stroke. 2001:1.Google Scholar
  36. 36.
    Kadkhodayan Y, Alreshaid A, Moran CJ, et al. Primary angiitis of the central nervous system at conventional angiography. Radiology. 2004;233:878–82.PubMedCrossRefGoogle Scholar
  37. 37.
    Pugliese F, Gaemperli O, Kinderlerer AR, et al. Imaging of vascular inflammation with [11 C]-PK11195 and positron emission tomography/computed tomography angiography. J Am Coll Cardiol. 2010;56:653–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Calabrese LH, Furlan AJ, Gragg LA, et al. Primary angiitis of the central nervous system: diagnostic criteria and clinical approach. Cleve Clin J Med. 1992;59:293–306.PubMedCrossRefGoogle Scholar
  39. 39.
    Kraemer M, Berlit P. Primary central nervous system vasculitis: clinical experiences with 21 new European cases. Rheumatol Int. 2011;31:463–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Schmidley JW. 10 questions on central nervous system vasculitis. Neurologist. 2008;14:138.PubMedCrossRefGoogle Scholar
  41. 41.
    Singhal AB, Hajj-Ali RA, Topcuoglu MA, et al. Reversible cerebral vasoconstriction syndromes: analysis of 139 cases. Arch Neurol. 2011;68:1005–112.PubMedCrossRefGoogle Scholar
  42. 42.
    Ducros A, Boukobza M, Porcher R, et al. The clinical and radiological spectrum of reversible cerebral vasoconstriction syndrome. A prospective series of 67 patients. Brain. 2007;130:3091–101.PubMedCrossRefGoogle Scholar
  43. 43.
    Ducros A. Reversible cerebral vasoconstriction syndrome. Lancet Neurol. 2012;11:906–17.PubMedCrossRefGoogle Scholar
  44. 44.
    Singhal AB, Topcuoglu MA, Fok JW, et al. Reversible cerebral vasoconstriction syndromes and primary angiitis of the central nervous system: clinical, imaging, and angiographic comparison. Ann Neurol. 2016;79:882–94.PubMedCrossRefGoogle Scholar
  45. 45.
    Elstner M, Linn J, Müller-Schunk S, et al. Reversible cerebral vasoconstriction syndrome: a complicated clinical course treated with intraarterial application of nimodipine. Cephalalgia. 2009;29:677–82.PubMedCrossRefGoogle Scholar
  46. 46.
    Mandell DM, Matouk CC, Farb RI, et al. Vessel wall MRI to differentiate between reversible cerebral vasoconstriction syndrome and central nervous system vasculitis. Stroke. 2012;43:860–2.PubMedCrossRefGoogle Scholar
  47. 47.
    Stevens CJ, Heran MKS. The many faces of posterior reversible encephalopathy syndrome. Br J Radiol. 2012;85:1566–75.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Sugimoto S, Yammamoto SL, Nagahiro S, Diksic M. Permeability change and brain tissue damage after intracarotid administration of cisplatin studied by double-tracer autoradiography in rats. J Neuro-Oncol. 1995;24:229–40.CrossRefGoogle Scholar
  49. 49.
    Mckinney AM, Bharathi Jagadeesan BD, Truwit CL. Central variant posterior reversible encephalopathy syndrome: brain stem or basal ganglia involvement lacking cortical or subcortical cerebral edema. Am J Roentgenol. 2013;201:631–8.CrossRefGoogle Scholar
  50. 50.
    Hobson EV, Craven I, Blank SC. Posterior reversible encephalopathy syndrome: a truly treatable neurologic illness. Perit Dial Int. 2012;32:590–4.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Davous P. CADASIL: a review with proposed diagnostic criteria. Eur J Neurol. 1998;5:219–33.PubMedCrossRefGoogle Scholar
  52. 52.
    Rigoldi M, Concolino D, Morrone A, et al. Intrafamilial phenotypic variability in four families with Anderson-Fabry disease. Clin Genet. 2014;86:258–63.PubMedCrossRefGoogle Scholar
  53. 53.
    Tuttolomondo A, Pecoraro R, Simonetta I, et al. Neurological complications of Anderson-Fabry disease. Curr Pharm Des. 2013;19:6014–30.PubMedCrossRefGoogle Scholar
  54. 54.
    Tuttolomondo A, Pecoraro R, Simonetta I, Miceli S, Pinto A, Licata G. Anderson-Fabry disease: a multiorgan disease. Curr Pharm Des. 2013;19:5974–96.PubMedCrossRefGoogle Scholar
  55. 55.
    Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Alroy J, Sabnis S, Kopp JB. Renal pathology in Fabry disease. J Am Soc Nephrol. 2002;13(Suppl 2):S134–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Rozenfeld P, Feriozzi S. Contribution of inflammatory pathways to Fabry disease pathogenesis. Mol Genet Metab. 2017;122:19–27.PubMedCrossRefGoogle Scholar
  58. 58.
    deVeber GA, Schwarting GA, Kolodny EH, Kowall NW. Fabry disease: immunocytochemical characterization of neuronal involvement. Ann Neurol. 1992;31:409–15.PubMedCrossRefGoogle Scholar
  59. 59.
    Kaye EM, Kolodny EH, Logigian EL, Ullman MD. Nervous system involvement in Fabry’s disease: clinicopathological and biochemical correlation. Ann Neurol. 1988;23:505–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Okeda R, Nisihara M. An autopsy case of Fabry disease with neuropathological investigation of the pathogenesis of associated dementia. Neuropathology. 2008;28:532–40.PubMedCrossRefGoogle Scholar
  61. 61.
    Fellgiebel A, Müller MJ, Ginsberg L. CNS manifestations of Fabry’s disease. Lancet Neurol. 2006;5:791–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Biegstraaten M, ArngrõÂmsson R, Barbey F, et al. Recommendations for initiation and cessation of enzyme replacement therapy in patients with Fabry disease: the European Fabry Working Group consensus document. Orphanet J Rare Dis. 2015;10:S 3733.CrossRefGoogle Scholar
  63. 63.
    El-Abassi R, Singhal D, England JD. Fabry’s disease. J Neurol Sci. 2014;344:S 5–19.CrossRefGoogle Scholar
  64. 64.
    Albano LM, Rivitti C, Bertola DR, Honjo RS, Kelmann SV, Giugliani R, et al. Angiokeratoma: a cutaneous marker of Fabry’s disease. Clin Exp Dermatol. 2010;35:505–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Rost NS, Cloonan L, Kanakis AS, et al. Determinants of white matter hyperintensity burden in patients with Fabry disease. Neurology. 2016;86:1880–6.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Fellgiebel A, Keller I, Martus P, et al. Basilar artery diameter is a potential screening tool for Fabry disease in young stroke patients. Cerebrovasc Dis. 2011;31:294–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Takanashi J, Barkovich AJ, Dillon WP, Sherr EH, Hart KA, Packman S. T1 hyperintensity in the pulvinar: key imaging feature for diagnosis of Fabry disease. AJNR Am J Neuroradiol. 2003;24:916–21.PubMedGoogle Scholar
  68. 68.
    Pistone G, Rizzo D, Bongiorno MR. Cutaneous complications of Anderson-Fabry disease. Curr Pharm Des. 2013;19:6031–6.CrossRefGoogle Scholar
  69. 69.
    Boggio P, Luna PC, Abad ME, Larralde M. Fabry disease. An Bras Dermatol. 2009;84:367–76.PubMedCrossRefGoogle Scholar
  70. 70.
    Martins AM, D’Almeida V, Kyosen SO, Takata ET, Delgado AG, Gonçalves AM, et al. Guidelines to diagnosis and monitoring of Fabry disease and review of treatment experiences. J Pediatr. 2009;155:S19–31.PubMedCrossRefGoogle Scholar
  71. 71.
    Goto Y, Nonaka I, Horai S. A mutation in the tRNA (Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990;348:651–3.PubMedCrossRefGoogle Scholar
  72. 72.
    Wang YX, Le WD. Progress in diagnosing mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Chin Med J. 2015;128:1820–5.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Sproule DM, Kaufmann P. Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes: basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. Ann N Y Acad Sci. 2008;1142:133–58.PubMedCrossRefGoogle Scholar
  74. 74.
    Nesbitt V, Pitceathly RD, Turnbull DM, et al. The UK MRC Mitochondrial Disease Patient Cohort Study: clinical phenotypes associated with the m.3243A>G mutation—implications for diagnosis and management. J Neurol Neurosurg Psychiatry. 2013;84:936–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Ito H, Mori K, Kagami S. Neuroimaging of stroke-like episodes in MELAS. Brain and Development. 2011;33:283–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Xie S. MR OEF imaging in MELAS. Methods Enzymol. 2014;547:433–44.PubMedCrossRefGoogle Scholar
  77. 77.
    Yu L, Xie S, Xiao J, Wang Z, Zhang X. Quantitative measurement of cerebral oxygen extraction fraction using MRI in patients with MELAS. PLoS One. 2013;8:e79859.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Li R, Xiao HF, Lyu JH, J J Wang D, Ma L, Lou X. Differential diagnosis of mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) and ischemic stroke using 3D pseudocontinuous arterial spin labeling. J Magn Reson Imaging. 2017;45:199–206.PubMedCrossRefGoogle Scholar
  79. 79.
    Dutra LA, de Souza AWS, Grinberg-Dias G, et al. Central nervous system vasculitis in adults: an update. Autoimmun Rev. 2017;16:123–31.PubMedCrossRefGoogle Scholar
  80. 80.
    Boysson H, Zuber M, Naggara O, et al. Primary angiitis of the central nervous system: description of the first fifty-two adults enrolled in the French cohort of patients with primary vasculitis of the central nervous system. Arthritis Rheum. 2014;66:1315–26.CrossRefGoogle Scholar
  81. 81.
    Salvarani C, Brown RD, Calamia KT, et al. Efficacy of tumor necrosis factor α blockade in primary central nervous system vasculitis resistant to immunosuppressive treatment. Arthritis Rheum. 2008;59:291–6.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Salvarani C, Brown RD, Huston J, et al. Treatment of primary CNS vasculitis with rituximab: case report. Neurology. 2014;82:1287–8.PubMedCrossRefGoogle Scholar
  83. 83.
    De Boysson H, Arquizan C, Guillevin L, et al. Rituximab for primary angiitis of the central nervous system: report of 2 patients from the French COVAC cohort and review of the literature. J Rheumatol. 2013;40:2102–3.PubMedCrossRefGoogle Scholar
  84. 84.
    Hutchinson C, Elbers J, Halliday W, et al. Treatment of small vessel primary CNS vasculitis in children: an open-label cohort study. Lancet Neurol. 2010;9:1078–84.PubMedCrossRefGoogle Scholar
  85. 85.
    Russo RA, Katsicas MM. Takayasu arteritis. Front Pediatr. 2018;6:265.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Albarrak AM, Mohammad Y, Hussain S, Husain S, Muayqil T. Simultaneous bilateral posterior ischemic optic neuropathy secondary to giant cell arteritis: a case presentation and review of the literature. BMC Ophthalmol. 2018;18:317.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Ozen S. The challenging face of polyarteritis nodosa and necrotizing vasculitis. Nat Rev Rheumatol. 2017;13:381–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Hernández-Rodriguez J, Alba MA, Prieto-González S, Cid MC. Diagnosis and classification of polyarteritis nodosa. J Autoimmun. 2014;48-49:84–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Jennette JC, Falk RJ. Pathogenesis of antineutrophil cytoplasmic autoantibody-mediated disease. Nat Rev Rheumatol. 2014;10:463–73.PubMedCrossRefGoogle Scholar
  90. 90.
    Zheng Y, Zhang Y, Cai M, et al. Central nervous system involvement in ANCA-associated vasculitis: what neurologists need to know. Front Neurol. 2019;9:1166.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Yates M, Watts RA, Bajema IM, Cid MC, Crestani B, Hauser T, et al. EULAR/ERA-EDTA recommendations for the management of ANCA-associated vasculitis. Ann Rheum Dis. 2016;75:1583–94.PubMedCrossRefGoogle Scholar
  92. 92.
    Bendorius M, Po C, Muller S, Jeltsch-David H. From systemic inflammation to neuroinflammation: the case of neurolupus. Int J Mol Sci. 2018;19.PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Schwartz N, Stock AD, Putterman C. Neuropsychiatric lupus: new mechanistic insights and future treatment directions. Nat Rev Rheumatol. 2019;  https://doi.org/10.1038/s41584-018-0156-8.PubMedCrossRefGoogle Scholar
  94. 94.
    Vivaldo JF, de Amorim JC, Julio PR, de Oliveira RJ, Appenzeller S. Definition of NPSLE: does the ACR nomenclature still hold? Front Med. 2018;5:138.CrossRefGoogle Scholar
  95. 95.
    Kassan SS, Lockshin MD. Central nervous system lupus erythematosus. The need for classification. Arthritis Rheum. 1979;22:1382–5.PubMedCrossRefGoogle Scholar
  96. 96.
    ACR ad hoc committee. The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum. 1999;42:599–608.CrossRefGoogle Scholar
  97. 97.
    Zirkzee E, Huizinga T, Bollen E, et al. Mortality in neuropsychiatric systemic lupus erythematosus (NPSLE). Lupus. 2014;23:31–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Schreiber K, Sciascia S, deGroot PG, et al. Antiphospholipid syndrome. Nat Rev Dis Primers. 2018;4:18005.PubMedCrossRefGoogle Scholar
  99. 99.
    Kittner SJ Gorelick PB. Antiphospholipid antibodies and stroke: an epidemiological perspective. Stroke. 1992;23:I19–22.PubMedGoogle Scholar
  100. 100.
    Ho RC, Thiaghu C, Ong H, et al. A meta-analysis of serum and cerebrospinal fluid autoantibodies in neuropsychiatric systemic lupus erythematosus. Autoimmun Rev. 2016;15:124–38.PubMedCrossRefGoogle Scholar
  101. 101.
    Salahuddin TS, Kalimo H, Johansson BB, Olsson Y. Observations on exudation of fibronectin, fibrinogen and albumin in the brain after carotid infusion of hyperosmolar solutions. An immunohistochemical study in the rat indicating long-lasting changes in the brain microenvironment and multifocal nerve cell injuries. Acta Neuropathol. 1988;76:1–10.PubMedCrossRefGoogle Scholar
  102. 102.
    Merali Z, Huang K, Mikulis D, Silver F, Kassner A. Evolution of blood–brain barrier permeability after acute ischemic stroke. PLoS One. 2018;12:e0171558.CrossRefGoogle Scholar
  103. 103.
    Kuntz M, Mysiorek C, Pétrault O, et al. Stroke-induced brain parenchymal injury drives blood–brain barrier early leakage kinetics: a combined in vivo/in vitro study. J Cereb Blood Flow Metab. 2014;34:95–107.PubMedCrossRefGoogle Scholar
  104. 104.
    Knowland D, Arac A, Sekiguchi K, et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron. 2014;82:603–17.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Rochfort KD, Cummins PM. The blood-brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem Soc Trans. 2015;43:702–6.PubMedCrossRefGoogle Scholar
  106. 106.
    Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV. Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke. 2007;38:1345–53.PubMedCrossRefGoogle Scholar
  107. 107.
    Gelb S, Stock AD, Anzi S, Putterman C, Ben-Zvi A. Mechanisms of neuropsychiatric lupus: the relative roles of the blood-cerebrospinal fluid barrier versus blood-brain barrier. J Autoimmun. 2018;91:34–44.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Ma X, Foster J, Saki’c B. Distribution and prevalence of leukocyte phenotypes in brains of lupus-prone mice. J Neuroimmunol. 2006;179:26–36.PubMedCrossRefGoogle Scholar
  109. 109.
    Morawski PA, Qi CF, Bolland S. Non-pathogenic tissue-resident CD8+ T cells uniquely accumulate in the brains of lupus-prone mice. Sci Rep. 2017;7:40838.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Jain S, Stock A, Macian F, Putterman C. A distinct T follicular helper cell subset infiltrates the brain in murine neuropsychiatric lupus. Front Immunol. 2018;9:487.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Kim SJ, Lee K, Diamond B. Follicular helper T cells in systemic lupus erythematosus. Front Immunol. 2018;9:1793.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    O’Sullivan FX, Vogelweid CM, Besch-Williford CL, Walker SE. Differential effects of CD4+ T cell depletion on inflammatory central nervous system disease, arthritis and sialadenitis in MRL/lpr mice. J Autoimmun. 1995;8:163–75.PubMedCrossRefGoogle Scholar
  113. 113.
    Katsumata Y, Harigai M, Kawaguchi Y, et al. Diagnostic reliability of cerebral spinal fluid tests for acute confusional state (delirium) in patients with systemic lupus erythematosus: interleukin 6 (IL-6), IL-8, interferon-alpha, IgG index, and Q-albumin. J Rheumatol. 2007;34:2010–7.PubMedGoogle Scholar
  114. 114.
    Hirohata S, Kanai Y, Mitsuo A, et al. Accuracy of cerebrospinal fluid IL-6 testing for diagnosis of lupus psychosis. A multicenter retrospective study. Clin Rheumatol. 2009;28:1319–23.PubMedCrossRefGoogle Scholar
  115. 115.
    Asano T, Ito H, Kariya Y, et al. Evaluation of blood-brain barrier function by quotient alpha2 macroglobulin and its relationship with interleukin-6 and complement component 3 levels in neuropsychiatric systemic lupus erythematosus. PLoS One. 2017;12:e0186414.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Shiozawa S, Kuroki Y, Kim M, Hirohata S, Ogino T. Interferon-alpha in lupus psychosis. Arthritis Rheum. 1992;35:417–22.PubMedCrossRefGoogle Scholar
  117. 117.
    Fragoso-Loyo H, Atisha-Fregoso Y, Llorente L, Sanchez-Guerrero J. Inflammatory profile in cerebrospinal fluid of patients with headache as a manifestation of neuropsychiatric systemic lupus erythematosus. Rheumatology (Oxford). 2013;52:2218–22.CrossRefGoogle Scholar
  118. 118.
    Santer DM, Yoshio T, Minota S, Moller T, Elkon KB. Potent induction of IFN-α and chemokines by autoantibodies in the cerebrospinal fluid of patients with neuropsychiatric lupus. J Immunol. 2009;182:1192–201.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Bialas AR, Presumey J, Das A, et al. Microglia-dependent synapse loss in type I interferon-mediated lupus. Nature. 2017;546:539–43.PubMedCrossRefGoogle Scholar
  120. 120.
    Eloranta ML, Rönnblom L. Cause and consequences of the activated type I interferon system in SLE. J Mol Med (Berl). 2016;94:1103–10.CrossRefGoogle Scholar
  121. 121.
    Yoshio T, Okamoto H, Kurasawa K, et al. IL-6, IL-8, IP-10, MCP-1 and G-CSF are significantly increased in cerebrospinal fluid but not in sera of patients with central neuropsychiatric lupus sera of patients with central neuropsychiatric lupus erythematosus. Lupus. 2016;25:997–1003.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Ichinose K, Arima K, Ushigusa T, et al. Distinguishing the cerebrospinal fluid cytokine profile in neuropsychiatric systemic lupus erythematosus from other autoimmune neurological diseases. Clin Immunol. 2015;157:114–20.PubMedCrossRefGoogle Scholar
  123. 123.
    Fragoso-Loyo H, Richaud-Patin Y, Orozco-Naváez A, et al. Interleukin-6 and chemokines in the neuropsychiatric manifestations of systemic lupus erythematosus. Arthritis Rheum. 2007;56:1242–50.PubMedCrossRefGoogle Scholar
  124. 124.
    DeGiorgio LA, Konstantinov KN, Lee SC, et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med. 2001;7:1189–93.CrossRefGoogle Scholar
  125. 125.
    Faust TW, Chang EH, Kowal C, et al. Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms. Proc Natl Acad Sci USA. 2010;107:18569–74.PubMedCrossRefGoogle Scholar
  126. 126.
    Arinuma Y, Yanagida T, Hirohata S. Association of cerebrospinal fluid anti-NR2 glutamate receptor antibodies with diffuse neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 2008;58:1130–5.PubMedCrossRefGoogle Scholar
  127. 127.
    Brimberg L, Mader S, Fujieda Y, et al. Antibodies as mediators of brain pathology. Trends Immunol. 2015;36:709–24.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Kowal C, DeGiorgio LA, Nakaoka T, et al. Cognition and immunity; antibody impairs memory. Immunity. 2004;21:179–88.PubMedCrossRefGoogle Scholar
  129. 129.
    Kowal C, DeGiorgio LA, Lee JY, et al. Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc Natl Acad Sci U S A. 2006;103:19854–9.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Eber T, Chapman J, Shoenfeld Y. Anti-ribosomal P-protein and its role in psychiatric manifestations of systemic lupus erythematosus: myth or reality? Lupus. 2005;14:571–5.PubMedCrossRefGoogle Scholar
  131. 131.
    Yoshio T, Masuyama J, Ikeda M, et al. Quantification of antiribosomal P0 protein antibodies by ELISA with recombinant P0 fusion protein and their association with central nervous system disease in systemic lupus erythematosus. J Rheumatol. 1995;22:1681–7.PubMedGoogle Scholar
  132. 132.
    Moscavitch SD, Szyper-Kravitz M, Shoenfeld Y. Autoimmune pathology accounts for common manifestations in a wide range of neuro-psychiatric disorders: the olfactory and immune system interrelationship. Clin Immunol. 2009;130:235–43.PubMedCrossRefGoogle Scholar
  133. 133.
    Elkon KB, Parnassa AP, Foster CL. Lupus autoantibodies target ribosomal P proteins. J Exp Med. 1985;162:459–71.PubMedCrossRefGoogle Scholar
  134. 134.
    Segovia-Miranda F, Serrano F, Dyrda A, et al. Pathogenicity of lupus antiribosomal P antibodies: role of cross-reacting neuronal surface P antigen in glutamatergic transmission and plasticity in a mouse model. Arthritis Rheumatol. 2015;67:1598–610.PubMedCrossRefGoogle Scholar
  135. 135.
    Katzav A, Solodeev I, Brodsky O, et al. Induction of autoimmune depression in mice by anti-ribosomal P antibodies via the limbic system. Arthritis Rheum. 2007;56:938–48.PubMedCrossRefGoogle Scholar
  136. 136.
    Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med. 2005;202:473–7.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Dellavance A, Alvarenga RR, Rodrigues SH, et al. Anti-aquaporin-4 antibodies in the context of assorted immune-mediated diseases. Eur J Neurol. 2012;19:248–52.PubMedCrossRefGoogle Scholar
  138. 138.
    Verkman AS, Phuan PW, Asavapanumas N, Tradtrantip L. Biology of AQP4 and anti-AQP4 antibody: therapeutic implications for NMO. Brain Pathol. 2013;23:684–95.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Mader S, Jeganathan V, Arinuma Y, et al. Understanding the antibody repertoire in neuropsychiatric systemic lupus erythematosus and neuromyelitis optica spectrum disorder: do they share common targets? Arthritis Rheumatol. 2018;70:277–86.PubMedCrossRefGoogle Scholar
  140. 140.
    Alexopoulos H, Kampylafka E, Fouka P, et al. Anti-aquaporin-4 autoantibodies in systemic lupus erythematosus persist for years and induce astrocytic cytotoxicity but not CNS disease. J Neuroimmunol. 2015;289:8–11.PubMedCrossRefGoogle Scholar
  141. 141.
    Conti F, Alessandri C, Bompane D, et al. Autoantibody profile in systemic lupus erythematosus with psychiatric manifestations: a role for anti-endothelial-cell antibodies. Arthritis Res Ther. 2004;6:R366–72.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Nara H, Okamoto H, Minota S, Yoshio T. Mouse monoclonal anti-human thrombomodulin antibodies bind to and activate endothelial cells through NF-κB activation in vitro. Arthritis Rheum. 2006;54:1629–37.PubMedCrossRefGoogle Scholar
  143. 143.
    Williams RC Jr, Sugiura K, Tan EM. Antibodies to microtubule-associated protein 2 in patients with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 2004;50:1239–47.PubMedCrossRefGoogle Scholar
  144. 144.
    Matsui T, Hayashi-Kisumi F, Kinoshita Y, et al. Identification of novel keratinocyte secreted peptides dermokine-alpha/−beta and a new stratified epithelium-secreted protein gene complex on human chromosome 19q13.1. Genomics. 2004;84:384–97.PubMedCrossRefGoogle Scholar
  145. 145.
    Cohen D, Rijnink EC, Nabuurs RJ, et al. Brain histopathology in patients with systemic lupus erythematosus: identification of lesions associated with clinical neuropsychiatric lupus syndromes and the role of complement. Rheumatology (Oxford). 2017;56:77–86.CrossRefGoogle Scholar
  146. 146.
    Menke J, Hsu MY, Byrne KT, et al. Sunlight triggers cutaneous lupus through a CSF-1-dependent mechanism in MRLFas(lpr) mice. J Immunol. 2008;181:7367–79.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Chalmers SA, Wen J, Doerner J, et al. Highly selective inhibition of Bruton’s tyrosine kinase attenuates skin and brain disease in murine lupus. Arthritis Res Ther. 2018;20:10.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Hirohata S, Miyamoto T. Elevated levels of interleukin-6 in cerebrospinal fluid from patients with systemic lupus erythematosus and central nervous system involvement. Arthritis Rheum. 1990;33:644–9.PubMedCrossRefGoogle Scholar
  149. 149.
    Sarbu N, Bargalló N, Cervera R. Advanced and conventional magnetic resonance imaging in neuropsychiatric lupus. Version 2. F1000Res. 2015 Jun 23 [revised 2015 Jan 1]. 4:162.  https://doi.org/10.12688/f1000research.6522.2. eCollection 2015PubMedPubMedCentralGoogle Scholar
  150. 150.
    Al-Obaidi M, Saunders D, Brown S, et al. Evaluation of magnetic resonance imaging abnormalities in juvenile onset neuropsychiatric systemic lupus erythematosus. Clin Rheumatol. 2016;35:2449–56.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Sarbu N, Alobeidi F, Toledano P, et al. Brain abnormalities in newly diagnosed neuropsychiatric lupus: systematic MRI approach and correlation with clinical and laboratory data in a large multicenter cohort. Autoimmun Rev. 2015;14:153–9.PubMedCrossRefGoogle Scholar
  152. 152.
    Ioannidis S, Mavridis M, Mitsias PD. Ischemic stroke as initial manifestation of systemic lupus erythematosus: a case report and review of the literature. eNeurologicalSci. 2018;13:26–30.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Csepany T, Bereczki D, Kollar J, et al. MRI findings in central nervous system systemic lupus erythematosus are associated with immunoserological parameters and hypertension. J Neurol. 2003;250:1348–54.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Toledano P, Sarbu N, Espinosa G, et al. Neuropsychiatric systemic lupus erythematosus: magnetic resonance imaging findings and correlation with clinical and immunological features. Autoimmun Rev. 2013;12:1166–70.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Brey RL, Gharavi AE, Lockshin MD. Neurologic complications of antiphospholipid antibodies. Rheum Dis Clin N Am. 1993;19:833–50.Google Scholar
  156. 156.
    Bertsias GK, Boumpas DT. Pathogenesis, diagnosis and management of neuropsychiatric SLE manifestations. Nat Rev Rheumatol. 2010;6:358–67.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Hamming L, van der Meulen R, Vergouwen A, Sigert C. Myelopathy in systemic lupus erythematosus: a case report and a review of the literature. Neth J Med. 2015;73:290–2.PubMedGoogle Scholar
  158. 158.
    Kovacs B, Lafferty TL, Brent LH, DeHoratius RJ. Transverse myelopathy in systemic lupus erythematosus: an analysis of 14 cases and review of the literature. Ann Rheum Dis. 2000;59:120–4.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Hanly JG. In: Lahita RG, editor. Systemic lupus erythematosus. 5th ed. Elsevier, San Diego; 2005. p. 727–46.Google Scholar
  160. 160.
    Meroni PL, Raschi E, Testoni C, et al. Statins prevent endothelial cell activation induced by antiphospholipid (anti-β2-glycoprotein I) antibodies: effect on the proadhesive and proinflammatory phenotype. Arthritis Rheum. 2001;44:2870–8.PubMedCrossRefGoogle Scholar
  161. 161.
    Cervera R. CAPS registry. Lupus. 2012;21:755–7.PubMedCrossRefGoogle Scholar
  162. 162.
    Gatto M, Zen M, Iaccarino L, Doria A. New therapeutic strategies in systemic lupus erythematosus management. Nat Rev Rheumatol. 2019 Jan;15:30–48.PubMedCrossRefGoogle Scholar
  163. 163.
    Fava A, Petri M. Systemic lupus erythematosus: diagnosis and management. Autoimmunity. 2019;96:1–13.CrossRefGoogle Scholar
  164. 164.
    Merrill JT, Manzi S, Aranow C, et al. Lupus community panel proposals for optimising clinical trials: 2018. Lupus Sci Med. 2018;5:e000258.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Hahn BH, McMahon MA, Wilkinson A, et al. Grossman, American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res. 2012;64:797–808.CrossRefGoogle Scholar
  166. 166.
    Bertsias GK, Tektonidou M, Amoura Z, et al. Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERAEDTA) recommendations for the management of adult and paediatric lupus nephritis. Ann Rheum Dis. 2012;71:1771–82.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Condon MB, Ashby D, Pepper RJ, et al. Prospective observational single-centre cohort study to evaluate the effectiveness of treating lupus nephritis with rituximab and mycophenolate mofetil but no oral steroids. Ann Rheum Dis. 2013;72:1280–6.PubMedCrossRefGoogle Scholar
  168. 168.
    Magder LS, Petri M. Incidence of and risk factors for adverse cardiovascular events among patients with systemic lupus erythematosus. Am J Epidemiol. 2012;176:708–19.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Thamer M, Hernán MA, Zhang Y, Cotter D, Petri M. Prednisone, lupus activity, and permanent organ damage. J Rheumatol. 2009;36:560–4.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Trevisani VF, Castro AA, Neves Neto JF, Atallah AN. Cyclophosphamide versus methylprednisolone for treating neuropsychiatric involvement in systemic lupus erythematosus (Cochrane review). In: The Cochrane library, Issue 4; 2003.Google Scholar
  171. 171.
    Tokunaga M, Saito K, Kawabata D, et al. Efficacy of rituximab (anti-CD20) for refractory systemic lupus erythematosus involving the central nervous system. Ann Rheum Dis. 2007;66:470–5.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Barile-Fabris L, Ariza-Andraca R, Olguin-Ortega L, et al. Controlled clinical trial of IV cyclophosphamide versus IV methylprednisolone in severe neurological manifestations in systemic lupus erythematosus. Ann Rheum Dis. 2005;64:620–5.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Mok CC, Lau CS, Wong RW. Treatment of lupus psychosis with oral cyclophosphamide followed by azathioprine maintenance: an open-label study. Am J Med. 2003;115:59–62.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Mrabet D, Meddeb N, Ajlani H, Sahli H, Sellami S. Cerebral vasculitis in a patient with rheumatoid arthritis. Joint Bone Spine. 2007;74:201–4.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Akrout R, Bendjemaa S, Fourati H, et al. J Med Case Rep. 2012;6:302.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Singleton JD, West SG, Reddy VV, Rak KM. Cerebral vasculitis complicating rheumatoid arthritis. South Med J. 1995;88:470–4.PubMedCrossRefGoogle Scholar
  177. 177.
    Kiss G, Kelemen J, Bely M, Vertes P. Clinically diagnosed fatal cerebral vasculitis in long-standing juvenile rheumatoid arthritis. Virchows Arch. 2006;448:381–3.PubMedCrossRefGoogle Scholar
  178. 178.
    Rodriguez Uranga JJ, Chinchon Espino D, Serrano Pozo A, Garcia Hernandez F. Pseudotumoral central nervous system vasculitis in rheumatoid arthritis. Med Clin (Barc). 2006;127:438–9.CrossRefGoogle Scholar
  179. 179.
    Cupps TR, Moore PM, Fauci AS. Isolated angiitis of the central nervous system. Prospective diagnostic and therapeutic experience. Am J Med. 1983;74:97–105.PubMedCrossRefGoogle Scholar
  180. 180.
    Delaney P. Neurologic manifestations in sarcoidosis. Review of the literature, with a report of 23 cases. Ann Intern Med. 1977;87:226–45.CrossRefGoogle Scholar
  181. 181.
    Moravan M, Segal BM. Treatment of CNS sarcoidosis with infliximab and mycophenolate mofetil. Neurology. 2009;72:337–40.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Calabrese LH, Duna GF. Drug-induced vasculitis. Curr Opin Rheumatol. 1996;8:34–40.PubMedCrossRefGoogle Scholar
  183. 183.
    Sigal LH. The neurologic presentation of vasculitic and rheumatologic syndromes: a review. Medicine. 1987;66:157–80.PubMedCrossRefGoogle Scholar
  184. 184.
    Kleinschmidt-DeMasters BK, Gilden DH. Varicella-Zoster virus infections of the nervous system: clinical and pathologic correlates. Arch Pathol Lab Med. 2001;125:770–80.PubMedGoogle Scholar
  185. 185.
    Gilden D, Cohrs RJ, Mahalingam R, et al. Varicella zoster virus vasculopathies: diverse clinical manifestations, laboratory features, pathogenesis, and treatment. Lancet Neurol. 2009;8:731–40.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Nemni R, Sanvito L, Quattrini A, Santuccio G, Camerlingo M, Canal N. Peripheral neuropathy in hepatitis C virus infection with and without cryoglobulinaemia. J Neurol Neurosurg Psychiatry. 2003;74:1267–71.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Tembl JI, Ferrer JM, Sevilla MT, Lago A, Mayordomo F, Vilchez JJ. Neurologic complications associated with hepatitis C virus infection. Neurology. 1999;53:861–4.PubMedCrossRefGoogle Scholar
  188. 188.
    Kamar N, Rostaing L, Alric L. Treatment of hepatitis C-virus-related glomerulonephritis. Kidney Int. 2006;69:436–9.PubMedCrossRefGoogle Scholar
  189. 189.
    Chetty R. Vasculitis associated with HIV infection. J Clin Pathol. 2001;54:275–8.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Guillevin L. Vasculitis in the context of HIV infection. AIDS. 2008;22(Suppl 3):S27–33.PubMedCrossRefGoogle Scholar
  191. 191.
    Ghanem KG. Neurosyphilis: a historical perspective and review. CNS Neurosci Ther. 2010;16:e157–68.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Workowski KA, Berman SM. Sexually transmitted diseases treatment guidelines. MMWR Recomm Rep. 2006;55:1–94.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Medical Education Promotion CenterTokyo Medical UniversityTokyoJapan
  2. 2.Department of Neurology, CHU-CharleroiCharleroiBelgium
  3. 3.Department of NeurosciencesUniversity of MonsMonsBelgium

Personalised recommendations