Roles of Effector T Cells in Neurological Autoimmunity

  • Yuki Fujita
  • Toshihide YamashitaEmail author
Part of the Contemporary Clinical Neuroscience book series (CCNE)


Neurological autoimmunity is a mistargeted immune response to the central or peripheral nervous system. Multiple sclerosis (MS) is one of many neuroimmune diseases involving autoreactive T cells in the central nervous systems (CNS). In MS, immune cells infiltrate the CNS and attack myelin sheaths, leading to demyelination, axonal damage, and neurological disabilities (Trapp and Nave, Annu Rev Neurosci 31:247–269, 2008; Hauser and Oksenberg, Neuron 52:61–76, 2006; Baxter, Nat Rev Immunol 7:904–912, 2007). The role of CD4+ T helper cells in MS pathology has been widely studied using animal models such as experimental autoimmune encephalomyelitis (EAE). Classically, it is considered that dysregulation of the balance between pro-inflammatory CD4+ T helper 1 (Th1) cells and anti-inflammatory Th2 cells plays an important role in MS development. More recent studies have provided evidence that interleukin (IL)-17-expressing Th17 cells are also essential for disease pathogenesis. Furthermore, CD8+ T cells are predominantly observed in human MS lesion sites. However, their functions in this disease are understudied. In this chapter, we summarize the roles of effector T cells in neuroimmune diseases focusing on findings from studies involving EAE and individuals with MS. Excess inflammatory responses can induce demyelination and progressive neuronal degeneration leading to functional disabilities. We also discuss approaches to modulate the immune system and attenuate neuronal degeneration as a therapeutic target for MS.


Multiple sclerosis Autoimmune encephalomyelitis CD4+ T cells Neuronal degeneration 


  1. 1.
    Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci. 2008;31:247–69.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Hauser SL, Oksenberg JR. The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron. 2006;52:61–76.PubMedCrossRefGoogle Scholar
  3. 3.
    Baxter AG. The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol. 2007;7:904–12.PubMedCrossRefGoogle Scholar
  4. 4.
    Louveau A, Harris TH, Kipnis J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 2015;36:569–77.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Charcot JM. Lecons sur les maladies du systeme nerveux faites a la Salpetriere Paris. Paris; 1880. Cambridge University Press.Google Scholar
  6. 6.
    Dutta R, Trapp BD. Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol. 2011;93:1–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Pachner AR. Experimental models of multiple sclerosis. Curr Opin Neurol. 2011;24:291–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23:683–747.PubMedCrossRefGoogle Scholar
  9. 9.
    Weiner HL. Multiple sclerosis is an inflammatory T-cell-mediated autoimmune disease. Arch Neurol. 2004;61:1613–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Becher B, Durell BG, Noelle RJ. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest. 2002;110:493–7.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Hu Y, Ota N, Peng I, Refino CJ, Danilenko DM, Caplazi P, Ouyang W. IL-17RC is required for IL-17A- and IL-17F-dependent signaling and the pathogenesis of experimental autoimmune encephalomyelitis. J Immunol. 2010;184:4307–16.PubMedCrossRefGoogle Scholar
  13. 13.
    Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K, Iwakura Y. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol. 2006;177:566–73.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, McClanahan TK, O’Shea JJ, Cua DJ. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol. 2009;10:314–24.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Haak S, Croxford AL, Kreymborg K, Heppner FL, Pouly S, Becher B, Waisman A. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest. 2009;119:61–9.PubMedGoogle Scholar
  16. 16.
    Booss J, Esiri MM, Tourtellotte WW, Mason DY. Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. J Neurol Sci. 1983;62:219–32.PubMedCrossRefGoogle Scholar
  17. 17.
    Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, Friese M, Schroder R, Deckert M, Schmidt S, et al. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med. 2000;192:393–404.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Jacobsen M, Cepok S, Quak E, Happel M, Gaber R, Ziegler A, Schock S, Oertel WH, Sommer N, Hemmer B. Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain. 2002;125:538–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Junker A, Ivanidze J, Malotka J, Eiglmeier I, Lassmann H, Wekerle H, Meinl E, Hohlfeld R, Dornmair K. Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain. 2007;130:2789–99.PubMedCrossRefGoogle Scholar
  20. 20.
    Bjartmar C, Kidd G, Mork S, Rudick R, Trapp BD. Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol. 2000;48:893–901.PubMedCrossRefGoogle Scholar
  21. 21.
    Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47:707–17.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Ben-Nun A, Yossefi S. Reversal of autoimmune encephalomyelitis by membranes presenting myelin basic protein-associated class II MHC molecule as an approach to immunotherapy of organ-specific autoimmune diseases. Eur J Immunol. 1990;20:357–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Pettinelli CB, McFarlin DE. Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+ 2- T lymphocytes. J Immunol. 1981;127:1420–3.PubMedGoogle Scholar
  24. 24.
    Seder RA, Ahmed R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat Immunol. 2003;4:835–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136:2348–57.PubMedGoogle Scholar
  26. 26.
    Bouchery T, Kyle R, Ronchese F, Le Gros G. The differentiation of CD4(+) T-helper cell subsets in the context of helminth parasite infection. Front Immunol. 2014;5:487.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hirahara K, Nakayama T. CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm. Int Immunol. 2016;28:163–71.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Schmitt N, Ueno H. Regulation of human helper T cell subset differentiation by cytokines. Curr Opin Immunol. 2015;34:130–6.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Parish CR. Immune response to chemically modified flagellin. I. Induction of antibody tolerance to flagellin by acetoacetylated derivatives of the protein. J Exp Med. 1971;134:1–20.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Parish CR. Immune response to chemically modified flagellin. II. Evidence for a fundamental relationship between humoral and cell-mediated immunity. J Exp Med. 1971;134:21–47.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Parish CR. Immune deviation: a historical perspective. Immunol Cell Biol. 1996;74:449–56.PubMedCrossRefGoogle Scholar
  32. 32.
    Liew FY, Parish CR. Lack of a correlation between cell-mediated immunity to the carrier and the carrier-hapten helper effect. J Exp Med. 1974;139:779–84.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Coffman RL, Carty J. A T cell activity that enhances polyclonal IgE production and its inhibition by interferon-gamma. J Immunol. 1986;136:949–54.PubMedGoogle Scholar
  34. 34.
    Nicholson LB, Kuchroo VK. Manipulation of the Th1/Th2 balance in autoimmune disease. Curr Opin Immunol. 1996;8:837–42.PubMedCrossRefGoogle Scholar
  35. 35.
    Szabo SJ, Sullivan BM, Peng SL, Glimcher LH. Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol. 2003;21:713–58.PubMedCrossRefGoogle Scholar
  36. 36.
    Christen U, von Herrath MG. Manipulating the type 1 vs type 2 balance in type 1 diabetes. Immunol Res. 2004;30:309–25.PubMedCrossRefGoogle Scholar
  37. 37.
    Hofstetter HH, Targoni OS, Karulin AY, Forsthuber TG, Tary-Lehmann M, Lehmann PV. Does the frequency and avidity spectrum of the neuroantigen-specific T cells in the blood mirror the autoimmune process in the central nervous system of mice undergoing experimental allergic encephalomyelitis? J Immunol. 2005;174:4598–605.PubMedCrossRefGoogle Scholar
  38. 38.
    Krakowski ML, Owens T. The central nervous system environment controls effector CD4+ T cell cytokine profile in experimental allergic encephalomyelitis. Eur J Immunol. 1997;27:2840–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Racke MK, Bonomo A, Scott DE, Cannella B, Levine A, Raine CS, Shevach EM, Rocken M. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J Exp Med. 1994;180:1961–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Waisman A, Ruiz PJ, Hirschberg DL, Gelman A, Oksenberg JR, Brocke S, Mor F, Cohen IR, Steinman L. Suppressive vaccination with DNA encoding a variable region gene of the T-cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity. Nat Med. 1996;2:899–905.PubMedCrossRefGoogle Scholar
  41. 41.
    McDonald AH, Swanborg RH. Antigen-specific inhibition of immune interferon production by suppressor cells of autoimmune encephalomyelitis. J Immunol. 1988;140:1132–8.PubMedGoogle Scholar
  42. 42.
    Racke MK, Burnett D, Pak SH, Albert PS, Cannella B, Raine CS, McFarlin DE, Scott DE. Retinoid treatment of experimental allergic encephalomyelitis. IL-4 production correlates with improved disease course. J Immunol. 1995;154:450–8.PubMedGoogle Scholar
  43. 43.
    Nicholson LB, Greer JM, Sobel RA, Lees MB, Kuchroo VK. An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity. 1995;3:397–405.PubMedCrossRefGoogle Scholar
  44. 44.
    Ando DG, Clayton J, Kono D, Urban JL, Sercarz EE. Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol. 1989;124:132–43.PubMedCrossRefGoogle Scholar
  45. 45.
    Bettelli E, Sullivan B, Szabo SJ, Sobel RA, Glimcher LH, Kuchroo VK. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med. 2004;200:79–87.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Nath N, Prasad R, Giri S, Singh AK, Singh I. T-bet is essential for the progression of experimental autoimmune encephalomyelitis. Immunology. 2006;118:384–91.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Simon AK, Seipelt E, Sieper J. Divergent T-cell cytokine patterns in inflammatory arthritis. Proc Natl Acad Sci U S A. 1994;91:8562–6.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Dolhain RJ, van der Heiden AN, ter Haar NT, Breedveld FC, Miltenburg AM. Shift toward T lymphocytes with a T helper 1 cytokine-secretion profile in the joints of patients with rheumatoid arthritis. Arthritis Rheum. 1996;39:1961–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 1996;17:138–46.PubMedCrossRefGoogle Scholar
  50. 50.
    Rocken M, Racke M, Shevach EM. IL-4-induced immune deviation as antigen-specific therapy for inflammatory autoimmune disease. Immunol Today. 1996;17:225–31.PubMedCrossRefGoogle Scholar
  51. 51.
    Matthys P, Vermeire K, Mitera T, Heremans H, Huang S, Billiau A. Anti-IL-12 antibody prevents the development and progression of collagen-induced arthritis in IFN-gamma receptor-deficient mice. Eur J Immunol. 1998;28:2143–51.PubMedCrossRefGoogle Scholar
  52. 52.
    Hayosh NS, Swanborg RH. Autoimmune effector cells. IX. Inhibition of adoptive transfer of autoimmune encephalomyelitis with a monoclonal antibody specific for interleukin 2 receptors. J Immunol. 1987;138:3771–5.PubMedGoogle Scholar
  53. 53.
    Simpson D, Noble S, Perry C. Glatiramer acetate: a review of its use in relapsing-remitting multiple sclerosis. CNS Drugs. 2002;16:825–50.PubMedCrossRefGoogle Scholar
  54. 54.
    Sellner J, Greeve I, Findling O, Kamm CP, Minten C, Engelhardt B, Grandgirard D, Leib SL, Mattle HP. Effect of interferon-beta and atorvastatin on Th1/Th2 cytokines in multiple sclerosis. Neurochem Int. 2008;53:17–21.PubMedCrossRefGoogle Scholar
  55. 55.
    Schrempf W, Ziemssen T. Glatiramer acetate: mechanisms of action in multiple sclerosis. Autoimmun Rev. 2007;6:469–75.PubMedCrossRefGoogle Scholar
  56. 56.
    Sega S, Wraber B, Mesec A, Horvat A, Ihan A. IFN-beta1a and IFN-beta1b have different patterns of influence on cytokines. Clin Neurol Neurosurg. 2004;106:255–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Duda PW, Schmied MC, Cook SL, Krieger JI, Hafler DA. Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest. 2000;105:967–76.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Farina C, Weber MS, Meinl E, Wekerle H, Hohlfeld R. Glatiramer acetate in multiple sclerosis: update on potential mechanisms of action. Lancet Neurol. 2005;4:567–75.PubMedCrossRefGoogle Scholar
  59. 59.
    Neuhaus O, Farina C, Yassouridis A, Wiendl H, Then Bergh F, Dose T, Wekerle H, Hohlfeld R. Multiple sclerosis: comparison of copolymer-1- reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci U S A. 2000;97:7452–7.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Krakauer M, Sorensen P, Khademi M, Olsson T, Sellebjerg F. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-beta treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression. Mult Scler. 2008;14:622–30.PubMedCrossRefGoogle Scholar
  61. 61.
    Vieira PL, Heystek HC, Wormmeester J, Wierenga EA, Kapsenberg ML. Glatiramer acetate (copolymer-1, copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells. J Immunol. 2003;170:4483–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Ochi H, Feng-Jun M, Osoegawa M, Minohara M, Murai H, Taniwaki T, Kira J. Time-dependent cytokine deviation toward the Th2 side in Japanese multiple sclerosis patients with interferon beta-1b. J Neurol Sci. 2004;222:65–73.PubMedCrossRefGoogle Scholar
  63. 63.
    Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, Myers LW, Panitch HS, Rose JW, Schiffer RB. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology. 1995;45:1268–76.PubMedCrossRefGoogle Scholar
  64. 64.
    Mancardi GL, Sardanelli F, Parodi RC, Melani E, Capello E, Inglese M, Ferrari A, Sormani MP, Ottonello C, Levrero F, et al. Effect of copolymer-1 on serial gadolinium-enhanced MRI in relapsing remitting multiple sclerosis. Neurology. 1998;50:1127–33.PubMedCrossRefGoogle Scholar
  65. 65.
    Billiau A, Heremans H, Vandekerckhove F, Dijkmans R, Sobis H, Meulepas E, Carton H. Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J Immunol. 1988;140:1506–10.PubMedGoogle Scholar
  66. 66.
    Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med. 2007;13:139–45.PubMedCrossRefGoogle Scholar
  67. 67.
    Voorthuis JA, Uitdehaag BM, De Groot CJ, Goede PH, van der Meide PH, Dijkstra CD. Suppression of experimental allergic encephalomyelitis by intraventricular administration of interferon-gamma in Lewis rats. Clin Exp Immunol. 1990;81:183–8.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Duong TT, Finkelman FD, Singh B, Strejan GH. Effect of anti-interferon-gamma monoclonal antibody treatment on the development of experimental allergic encephalomyelitis in resistant mouse strains. J Neuroimmunol. 1994;53:101–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Krakowski M, Owens T. Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur J Immunol. 1996;26:1641–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Tran EH, Prince EN, Owens T. IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines. J Immunol. 2000;164:2759–68.PubMedCrossRefGoogle Scholar
  71. 71.
    Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramshaw IA. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol. 1996;157:3223–7.PubMedGoogle Scholar
  72. 72.
    Willenborg DO, Fordham SA, Staykova MA, Ramshaw IA, Cowden WB. IFN-gamma is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide. J Immunol. 1999;163:5278–86.PubMedGoogle Scholar
  73. 73.
    Furlan R, Brambilla E, Ruffini F, Poliani PL, Bergami A, Marconi PC, Franciotta DM, Penna G, Comi G, Adorini L, et al. Intrathecal delivery of IFN-gamma protects C57BL/6 mice from chronic-progressive experimental autoimmune encephalomyelitis by increasing apoptosis of central nervous system-infiltrating lymphocytes. J Immunol. 2001;167:1821–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang GX, Gran B, Yu S, Li J, Siglienti I, Chen X, Kamoun M, Rostami A. Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol. 2003;170:2153–60.PubMedCrossRefGoogle Scholar
  75. 75.
    Infante-Duarte C, Horton HF, Byrne MC, Kamradt T. Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol. 2000;165:6107–15.PubMedCrossRefGoogle Scholar
  76. 76.
    Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 2003;278:1910–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, Sedgwick JD, Cua DJ. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med. 2003;198:1951–7.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006;441:231–4.PubMedCrossRefGoogle Scholar
  80. 80.
    Tahmasebinia F, Pourgholaminejad A. The role of Th17 cells in auto-inflammatory neurological disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2017;79:408–16.PubMedCrossRefGoogle Scholar
  81. 81.
    Ferber IA, Brocke S, Taylor-Edwards C, Ridgway W, Dinisco C, Steinman L, Dalton D, Fathman CG. Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol. 1996;156:5–7.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Gran B, Zhang GX, Yu S, Li J, Chen XH, Ventura ES, Kamoun M, Rostami A. IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol. 2002;169:7104–10.PubMedCrossRefGoogle Scholar
  83. 83.
    Gutcher I, Urich E, Wolter K, Prinz M, Becher B. Interleukin 18-independent engagement of interleukin 18 receptor-alpha is required for autoimmune inflammation. Nat Immunol. 2006;7:946–53.PubMedCrossRefGoogle Scholar
  84. 84.
    El-behi M, Rostami A, Ciric B. Current views on the roles of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol. 2010;5:189–97.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM. IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med. 2008;205:1535–41.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol. 2003;171:6173–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Bush KA, Farmer KM, Walker JS, Kirkham BW. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein. Arthritis Rheum. 2002;46:802–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Kreymborg K, Etzensperger R, Dumoutier L, Haak S, Rebollo A, Buch T, Heppner FL, Renauld JC, Becher B. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J Immunol. 2007;179:8098–104.PubMedCrossRefGoogle Scholar
  89. 89.
    Bahlo M, Stankovich J, Danoy P, Hickey PF, Taylor BV, Browning SR, Australian, New Zealand Multiple Sclerosis Genetics C, Brown MA, Rubio JP. Saliva-derived DNA performs well in large-scale, high-density single-nucleotide polymorphism microarray studies. Cancer Epidemiol Biomark Prev. 2010;19:794–8.CrossRefGoogle Scholar
  90. 90.
    Baranzini SE, Wang J, Gibson RA, Galwey N, Naegelin Y, Barkhof F, Radue EW, Lindberg RL, Uitdehaag BM, Johnson MR, et al. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum Mol Genet. 2009;18:767–78.PubMedCrossRefGoogle Scholar
  91. 91.
    International Multiple Sclerosis Genetics C, Wellcome Trust Case Control C, Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, Dilthey A, Su Z, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476:214–9.CrossRefGoogle Scholar
  92. 92.
    International Multiple Sclerosis Genetics C, Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL, de Bakker PI, Gabriel SB, Mirel DB, et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med. 2007;357:851–62.CrossRefGoogle Scholar
  93. 93.
    Patsopoulos NA, Bayer Pharma MSGWG, Steering Committees of Studies Evaluating I-b, a CCRA, Consortium AN, GeneMsa, International Multiple Sclerosis Genetics C, Esposito F, Reischl J, Lehr S, et al. Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann Neurol. 2011;70:897–912.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Sawcer S, Franklin RJ, Ban M. Multiple sclerosis genetics. Lancet Neurol. 2014;13:700–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Davidson A, Diamond B. Autoimmune diseases. N Engl J Med. 2001;345:340–50.PubMedCrossRefGoogle Scholar
  96. 96.
    Naito S, Namerow N, Mickey MR, Terasaki PI. Multiple sclerosis: association with HL-A3. Tissue Antigens. 1972;2:1–4.PubMedCrossRefGoogle Scholar
  97. 97.
    Jersild C, Svejgaard A, Fog T. HL-A antigens and multiple sclerosis. Lancet. 1972;1:1240–1.PubMedCrossRefGoogle Scholar
  98. 98.
    Bertrams J, Kuwert E, Liedtke U. HL-A antigens and multiple sclerosis. Tissue Antigens. 1972;2:405–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Traugott U, Reinherz EL, Raine CS. Multiple sclerosis: distribution of T cell subsets within active chronic lesions. Science. 1983;219:308–10.PubMedCrossRefGoogle Scholar
  100. 100.
    Hauser SL, Cazenave PA, Lyon-Caen O, Taguchi T, Huchet M, Nuret H, Changeux JP, Henderson CE. Immunoblot analysis of circulating antibodies against muscle proteins in amyotrophic lateral sclerosis and other neurologic diseases. Neurology. 1986;36:1614–8.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Hohlfeld R, Wekerle H. Immunological update on multiple sclerosis. Curr Opin Neurol. 2001;14:299–304.PubMedCrossRefGoogle Scholar
  102. 102.
    Hayashi T, Morimoto C, Burks JS, Kerr C, Hauser SL. Dual-label immunocytochemistry of the active multiple sclerosis lesion: major histocompatibility complex and activation antigens. Ann Neurol. 1988;24:523–31.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    van Nierop GP, van Luijn MM, Michels SS, Melief MJ, Janssen M, Langerak AW, Ouwendijk WJD, Hintzen RQ, Verjans G. Phenotypic and functional characterization of T cells in white matter lesions of multiple sclerosis patients. Acta Neuropathol. 2017;134:383–401.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Hauser SL, Bhan AK, Gilles F, Kemp M, Kerr C, Weiner HL. Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann Neurol. 1986;19:578–87.PubMedCrossRefGoogle Scholar
  105. 105.
    Skulina C, Schmidt S, Dornmair K, Babbe H, Roers A, Rajewsky K, Wekerle H, Hohlfeld R, Goebels N. Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proc Natl Acad Sci U S A. 2004;101:2428–33.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Steinman L. Myelin-specific CD8 T cells in the pathogenesis of experimental allergic encephalitis and multiple sclerosis. J Exp Med. 2001;194:F27–30.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlen C, Goverman J. A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med. 2001;194:669–76.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Neumann H, Medana IM, Bauer J, Lassmann H. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci. 2002;25:313–9.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Neumann H, Cavalie A, Jenne DE, Wekerle H. Induction of MHC class I genes in neurons. Science. 1995;269:549–52.PubMedCrossRefGoogle Scholar
  110. 110.
    Machado-Santos J, Saji E, Troscher AR, Paunovic M, Liblau R, Gabriely G, Bien CG, Bauer J, Lassmann H. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain. 2018;141:2066–82.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol. 2016;16:79–89.PubMedCrossRefGoogle Scholar
  112. 112.
    Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol. 2009;10:524–30.PubMedCrossRefGoogle Scholar
  113. 113.
    Liu L, Zhong Q, Tian T, Dubin K, Athale SK, Kupper TS. Epidermal injury and infection during poxvirus immunization is crucial for the generation of highly protective T cell-mediated immunity. Nat Med. 2010;16:224–7.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrancois L, Farber DL. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J Immunol. 2011;187:5510–4.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Owens GC, Chang JW, Huynh MN, Chirwa T, Vinters HV, Mathern GW. Evidence for resident memory T cells in Rasmussen encephalitis. Front Immunol. 2016;7:64.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain. 2000;123(Pt 6):1174–83.PubMedCrossRefGoogle Scholar
  117. 117.
    Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Bruck W. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain. 2002;125:2202–12.PubMedCrossRefGoogle Scholar
  118. 118.
    Sun D, Whitaker JN, Huang Z, Liu D, Coleclough C, Wekerle H, Raine CS. Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J Immunol. 2001;166:7579–87.PubMedCrossRefGoogle Scholar
  119. 119.
    Ford ML, Evavold BD. Specificity, magnitude, and kinetics of MOG-specific CD8+ T cell responses during experimental autoimmune encephalomyelitis. Eur J Immunol. 2005;35:76–85.PubMedCrossRefGoogle Scholar
  120. 120.
    Horwitz MS, Evans CF, McGavern DB, Rodriguez M, Oldstone MBA. Primary demyelination in transgenic mice expressing interferon-gamma. Nat Med. 1997;3:1037–41.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Huber M, Heink S, Grothe H, Guralnik A, Reinhard K, Elflein K, Hunig T, Mittrucker HW, Brustle A, Kamradt T, et al. A Th17-like developmental process leads to CD8(+) Tc17 cells with reduced cytotoxic activity. Eur J Immunol. 2009;39:1716–25.PubMedCrossRefGoogle Scholar
  122. 122.
    Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, Fugger L. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol. 2008;172:146–55.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Huber M, Heink S, Pagenstecher A, Reinhard K, Ritter J, Visekruna A, Guralnik A, Bollig N, Jeltsch K, Heinemann C, et al. IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. J Clin Invest. 2013;123:247–60.PubMedCrossRefGoogle Scholar
  124. 124.
    Leuenberger T, Paterka M, Reuter E, Herz J, Niesner RA, Radbruch H, Bopp T, Zipp F, Siffrin V. The role of CD8+ T cells and their local interaction with CD4+ T cells in myelin oligodendrocyte glycoprotein35-55-induced experimental autoimmune encephalomyelitis. J Immunol. 2013;191:4960–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Reuter E, Gollan R, Grohmann N, Paterka M, Salmon H, Birkenstock J, Richers S, Leuenberger T, Brandt AU, Kuhlmann T, et al. Cross-recognition of a myelin peptide by CD8+ T cells in the CNS is not sufficient to promote neuronal damage. J Neurosci. 2015;35:4837–50.PubMedCrossRefGoogle Scholar
  126. 126.
    Fournier AE, GrandPre T, Strittmatter SM. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature. 2001;409:341–6.PubMedCrossRefGoogle Scholar
  127. 127.
    Domeniconi M, Cao Z, Spencer T, Sivasankaran R, Wang K, Nikulina E, Kimura N, Cai H, Deng K, Gao Y, et al. Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron. 2002;35:283–90.PubMedCrossRefGoogle Scholar
  128. 128.
    Liu BP, Fournier A, GrandPre T, Strittmatter SM. Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science. 2002;297:1190–3.PubMedCrossRefGoogle Scholar
  129. 129.
    Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, He Z. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature. 2002;417:941–4.PubMedCrossRefGoogle Scholar
  130. 130.
    Yamashita T, Higuchi H, Tohyama M. The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J Cell Biol. 2002;157:565–70.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Wang KC, Kim JA, Sivasankaran R, Segal R, He Z. P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature. 2002;420:74–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Wong ST, Henley JR, Kanning KC, Huang KH, Bothwell M, Poo MM. A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat Neurosci. 2002;5:1302–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci. 2004;7:221–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Yamashita T, Tohyama M. The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci. 2003;6:461–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Zhang Z, Xu X, Zhang Y, Zhou J, Yu Z, He C. LINGO-1 interacts with WNK1 to regulate nogo-induced inhibition of neurite extension. J Biol Chem. 2009;284:15717–28.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Fukata Y, Itoh TJ, Kimura T, Menager C, Nishimura T, Shiromizu T, Watanabe H, Inagaki N, Iwamatsu A, Hotani H, et al. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol. 2002;4:583–91.PubMedCrossRefGoogle Scholar
  137. 137.
    Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, Chang J, Thill G, Levesque M, Zhang M, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci. 2005;8:745–51.PubMedCrossRefGoogle Scholar
  138. 138.
    Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, Wong WM, Wang L, Su H, Chu TH, et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med. 2007;13:1228–33.PubMedCrossRefGoogle Scholar
  139. 139.
    Mi S, Miller RH, Tang W, Lee X, Hu B, Wu W, Zhang Y, Shields CB, Zhang Y, Miklasz S, et al. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann Neurol. 2009;65:304–15.PubMedCrossRefGoogle Scholar
  140. 140.
    Rudick RA, Mi S, Sandrock AW Jr. LINGO-1 antagonists as therapy for multiple sclerosis: in vitro and in vivo evidence. Expert Opin Biol Ther. 2008;8:1561–70.PubMedCrossRefGoogle Scholar
  141. 141.
    Cadavid D, Balcer L, Galetta S, Aktas O, Ziemssen T, Vanopdenbosch L, Frederiksen J, Skeen M, Jaffe GJ, Butzkueven H, et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2017;16:189–99.PubMedCrossRefGoogle Scholar
  142. 142.
    Siebold C, Yamashita T, Monnier PP, Mueller BK, Pasterkamp RJ. RGMs: structural insights, molecular regulation, and downstream signaling. Trends Cell Biol. 2017;27:365–78.PubMedCrossRefGoogle Scholar
  143. 143.
    Yamashita T, Mueller BK, Hata K. Neogenin and repulsive guidance molecule signaling in the central nervous system. Curr Opin Neurobiol. 2007;17:29–34.PubMedCrossRefGoogle Scholar
  144. 144.
    Matsunaga E, Tauszig-Delamasure S, Monnier PP, Mueller BK, Strittmatter SM, Mehlen P, Chedotal A. RGM and its receptor neogenin regulate neuronal survival. Nat Cell Biol. 2004;6:749–55.PubMedCrossRefGoogle Scholar
  145. 145.
    Rajagopalan S, Deitinghoff L, Davis D, Conrad S, Skutella T, Chedotal A, Mueller BK, Strittmatter SM. Neogenin mediates the action of repulsive guidance molecule. Nat Cell Biol. 2004;6:756–62.PubMedCrossRefGoogle Scholar
  146. 146.
    Wilson NH, Key B. Neogenin interacts with RGMa and netrin-1 to guide axons within the embryonic vertebrate forebrain. Dev Biol. 2006;296:485–98.PubMedCrossRefGoogle Scholar
  147. 147.
    Schwab JM, Conrad S, Monnier PP, Julien S, Mueller BK, Schluesener HJ. Spinal cord injury-induced lesional expression of the repulsive guidance molecule (RGM). Eur J Neurosci. 2005;21:1569–76.PubMedCrossRefGoogle Scholar
  148. 148.
    Schwab JM, Monnier PP, Schluesener HJ, Conrad S, Beschorner R, Chen L, Meyermann R, Mueller BK. Central nervous system injury-induced repulsive guidance molecule expression in the adult human brain. Arch Neurol. 2005;62:1561–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Hata K, Fujitani M, Yasuda Y, Doya H, Saito T, Yamagishi S, Mueller BK, Yamashita T. RGMa inhibition promotes axonal growth and recovery after spinal cord injury. J Cell Biol. 2006;173:47–58.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Nakagawa H, Ninomiya T, Yamashita T, Takada M. Treatment with the neutralizing antibody against repulsive guidance molecule-a promotes recovery from impaired manual dexterity in a primate model of spinal cord injury. Cereb Cortex. 2019;29:561–72.PubMedCrossRefGoogle Scholar
  151. 151.
    Muramatsu R, Kubo T, Mori M, Nakamura Y, Fujita Y, Akutsu T, Okuno T, Taniguchi J, Kumanogoh A, Yoshida M, et al. RGMa modulates T cell responses and is involved in autoimmune encephalomyelitis. Nat Med. 2011;17:488–94.PubMedCrossRefGoogle Scholar
  152. 152.
    Tanabe S, Yamashita T. Repulsive guidance molecule-a is involved in Th17-cell-induced neurodegeneration in autoimmune encephalomyelitis. Cell Rep. 2014;9:1459–70.PubMedCrossRefGoogle Scholar
  153. 153.
    Tanabe S, Fujita Y, Ikuma K, Yamashita T. Inhibiting repulsive guidance molecule-a suppresses secondary progression in mouse models of multiple sclerosis. Cell Death Dis. 2018;9:1061.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Demicheva E, Cui YF, Bardwell P, Barghorn S, Kron M, Meyer AH, Schmidt M, Gerlach B, Leddy M, Barlow E, et al. Targeting repulsive guidance molecule A to promote regeneration and neuroprotection in multiple sclerosis. Cell Rep. 2015;10:1887–98.PubMedCrossRefGoogle Scholar
  155. 155.
    Karim H, Kim SH, Lapato AS, Yasui N, Katzenellenbogen JA, Tiwari-Woodruff SK. Increase in chemokine CXCL1 by ERbeta ligand treatment is a key mediator in promoting axon myelination. Proc Natl Acad Sci U S A. 2018;115:6291–6.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Tiwari-Woodruff S, Morales LB, Lee R, Voskuhl RR. Differential neuroprotective and antiinflammatory effects of estrogen receptor (ER)alpha and ERbeta ligand treatment. Proc Natl Acad Sci U S A. 2007;104:14813–8.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Moore SM, Khalaj AJ, Kumar S, Winchester Z, Yoon J, Yoo T, Martinez-Torres L, Yasui N, Katzenellenbogen JA, Tiwari-Woodruff SK. Multiple functional therapeutic effects of the estrogen receptor beta agonist indazole-Cl in a mouse model of multiple sclerosis. Proc Natl Acad Sci U S A. 2014;111:18061–6.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Crawford DK, Mangiardi M, Song B, Patel R, Du S, Sofroniew MV, Voskuhl RR, Tiwari-Woodruff SK. Oestrogen receptor beta ligand: a novel treatment to enhance endogenous functional remyelination. Brain. 2010;133:2999–3016.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Karim H, Kim SH, Lauderdale K, Lapato AS, Atkinson K, Yasui N, Yamate-Morgan H, Sekyi M, Katzenellenbogen JA, Tiwari-Woodruff SK. Analogues of ERbeta ligand chloroindazole exert immunomodulatory and remyelinating effects in a mouse model of multiple sclerosis. Sci Rep. 2019;9:503.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Montalban X, Belachew S, Wolinsky JS. Ocrelizumab in primary progressive and relapsing multiple sclerosis. N Engl J Med. 2017;376:1694.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, de Seze J, Giovannoni G, Hartung HP, Hemmer B, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376:209–20.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Montalban X, Rammohan KW, Selmaj K, et al. Ocrelizumab versus interferon Beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376:221–34.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Molecular Neuroscience, Graduate School of MedicineOsaka UniversityOsakaJapan
  2. 2.WPI Immunology Frontier Research CenterOsaka UniversityOsakaJapan
  3. 3.Graduate School of Frontier BioscienceOsaka UniversityOsakaJapan
  4. 4.Department of Neuro-Medical Science, Graduate School of MedicineOsaka UniversityOsakaJapan

Personalised recommendations