Advertisement

Multiple Sclerosis

  • Jun-ichi KiraEmail author
  • Noriko Isobe
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Multiple sclerosis (MS) is an inflammatory demyelinating disease that targets myelin in the central nervous system (CNS), with relative sparing of axons. MS affects more than 2.5 million people worldwide and more commonly affects females. MS is prevalent in people of Caucasian descent living in the temperate regions of Europe, North America, and Australia, while it is relatively rare in Asians and Africans, indicating clear racial and geographical differences. Most MS patients initially have a relapsing-remitting phase with a mean age of onset around 30 years of age. This is termed relapsing-remitting MS (RRMS). In its natural course, after 10–20 years, about half of RRMS patients develop a secondary progressive phase with or without superimposed relapses, which is termed secondary progressive MS (SPMS). Approximately 10–20% of MS patients exhibit a relentlessly progressive course from the onset, termed primary progressive MS (PPMS).

MS is assumed to be an autoimmune disease but this is not yet proven. In addition to major effects of human leukocyte antigen (HLA) class II genes (such as HLA-DRB1⃰15:01), genome-wide association studies have revealed many susceptibility genes for MS with modest effect size. The functions of these genes are mostly immune-related, supporting the autoimmune hypothesis. T helper (Th)1/Th17 cell involvement in acute relapse and acute MS lesion formation is supported by perivascular lymphocyte cuffing consisting mainly of CD4+ T cells, increased numbers of T cells showing inter- and intra-molecular epitope spreading against myelin proteins, increased cerebrospinal fluid (CSF) levels of interferon (IFN)γ, interleukin (IL)17 and downstream proinflammatory cytokines, exacerbation of disease following IFNγ administration, and increased percentages of Th1 cells secreting IFNγ and of Th17 cells secreting IL-17 at relapse. Clonal expansion of CD8+ T cells and abundant infiltration of CD8+ T cells suggest a contribution of cytotoxic T cells, presumably by acute axonal transection. Although B cell infiltration in the CNS parenchyma is not prominent, ectopic lymphoid follicles that appear to have a close correlation with subpial demyelination are often detected in the meninges. Their existence indicates an involvement of B cells in MS. The efficacy of anti-CD20 monoclonal antibody therapy also supports a B cell contribution to MS, probably through B−T cell interaction and proinflammatory cytokine production. However, no specific autoantibodies for MS have been discovered. Although our understanding of MS pathogenesis has increased remarkably in recent years, its etiology remains to be established. Recently developed disease-modifying drugs (DMDs) can efficiently suppress MS relapse but disability still progresses even with these drugs. Only one DMD is modestly effective for PPMS. The mechanism of the progressive phase remains unknown, and its elucidation and control by novel drugs are major challenges for the future.

Keywords

Multiple sclerosis Demyelination Magnetic resonance imaging Epidemiology Environment Gene Neuropathology Disease-modifying drug 

Notes

Conflict of Interest Statement

Jun-ichi Kira has received consultancy fees, speaking fees and/or honoraria from Novartis Pharma, Mitsubishi Tanabe Pharma, Boehringer Ingelheim, Teijin Pharma, Takeda Pharmaceutical Company, Otsuka Pharmaceutical, Astellas Pharma, Pfizer Japan, and Eisai Co. Dr. Isobe is supported by a grant from JSPS KAKENHI (Grant No. 18 K07529), and received grant support from Mitsubishi Tanabe Pharma, Osoegawa Neurology Clinic, Bayer Yakuhin, Ltd., and Japan Blood Products Organization.

Funding

This study was supported in part by a Health and Labour Sciences Research Grant on Intractable Diseases (H29-Nanchitou (Nan)-Ippan-043) from the Ministry of Health, Labour, and Welfare, Japan, by the “Practical Research Project for Rare/Intractable Diseases” from the Japan Agency for Medical Research and Development (AMED , 17ek0109115h0003), Japan, by a research grant from the Japanese Multiple Sclerosis Society, by a research grant from the Japan Intractable Disease Research Foundation, by “Glial Assembly” Grants-in-Aid for Scientific Research on Innovative Areas (MEXT KAKENHI Grant Number 25117012) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by a Grant-in-Aid for Scientific Research (A) (JSPS KAKENHI Grant Number 16H02657) from the Japan Society for the Promotion of Science, Japan.

References

  1. 1.
    Sadovnick AD, Armstrong H, Rice GP, et al. A population-based study of multiple sclerosis in twins: update. Ann Neurol. 1993;33:281–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, Thompson AJ. Global perspectives. Neurology. 2014;83:1022–4. (MS International Federation. Atlas of MS 2013. http://www.atlasofms.org)PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kira J. Multiple sclerosis in the Japanese population. Lancet Neurol. 2003;2:117–27.PubMedCrossRefGoogle Scholar
  4. 4.
    Ebers GC. Environmental factors and multiple sclerosis. Lancet Neurol. 2008;7:268–77.PubMedCrossRefGoogle Scholar
  5. 5.
    Kurtzke JF, Kurland LT, Goldberg ID. Mortality and migration in multiple sclerosis. Neurology. 1971;21:1186–97.PubMedCrossRefGoogle Scholar
  6. 6.
    Detels R, Visscher BR, Haile RW, Malmgren RM, Dudley JP, Coulson AH. Multiple sclerosis and age at migration. Am J Epidemiol. 1978;108:386–93.PubMedCrossRefGoogle Scholar
  7. 7.
    Elian M, Nightingale S, Dean G. Multiple sclerosis among United Kingdom-born children of immigrants from the Indian subcontinent, Africa and the West Indies. J Neurol Neurosurg Psychiatry. 1990;53:906–11.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Dean G, Elian M. Age at immigration to England of Asian and Caribbean immigrants and the risk of developing multiple sclerosis. J Neurol Neurosurg Psychiatry. 1997;63:565–8.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hammond SR, English DR, McLeod JG. The age-range of risk of developing multiple sclerosis: evidence from a migrant population in Australia. Brain. 2000;123:968–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Sánchez JL, Palacio LG, Uribe CS, Londoño AC, Villa A, Jiménez M, et al. Clinical features of multiple sclerosis in a genetically homogeneous tropical population. Mult Scler. 2001;7:227–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Noonan CW, Kathman SJ, White MC. Prevalence estimates for MS in the United States and evidence of an increasing trend for women. Neurology. 2002;58:136–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Barnett MH, Williams DB, Day S, Macaskill P, McLeod JG. Progressive increase in incidence and prevalence of multiple sclerosis in Newcastle, Australia: a 35-year study. J Neurol Sci. 2003;213:1–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Wallin MT, Page WF, Kurtzke JF. Multiple sclerosis in US veterans of the Vietnam era and later military service: race, sex, and geography. Ann Neurol. 2004;55:65–71.PubMedCrossRefGoogle Scholar
  14. 14.
    Osoegawa M, Kira J, Fukazawa T, Fujihara K, Kikuchi S, Matsui M, et al. Temporal changes and geographical differences in multiple sclerosis phenotypes in Japanese: nationwide survey results over 30 years. Mult Scler. 2009;15:159–73.PubMedCrossRefGoogle Scholar
  15. 15.
    Kennedy J, O’Connor P, Sadovnick AD, Perara M, Yee I, Banwell B. Age at onset of multiple sclerosis may be influenced by place of residence during childhood rather than ancestry. Neuroepidemiology. 2006;26:162–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Orton S-M, Herrera B, Yee IM, Valdar W, Ramagopalan SV, Sadovnic AD, et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol. 2006;5:932–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Kira J. Genetic and environmental backgrounds responsible for the change in the phenotype of MS in Japanese subjects. Mult Scler Relat Disord. 2012;1:188–95.PubMedCrossRefGoogle Scholar
  18. 18.
    Tremlett HY, Zhao Y, Devonshire V. Natural history of secondary-progressive multiple sclerosis. Mult Scler. 2008;14:314–24.PubMedCrossRefGoogle Scholar
  19. 19.
    Scalfari A, Neuhaus A, Daumer M, Muraro PA, PA EGC. Onset of secondary progressive phase and long-term evolution of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2013;85:67–75.PubMedCrossRefGoogle Scholar
  20. 20.
    Mistry N, Dixon J, Tallantyre E, Tench C, Abdel-Fahim R, Jaspan T, et al. Central veins in brain lesions visualized with high-field magnetic resonance imaging: a pathologically specific diagnostic biomarker for inflammatory demyelination in the brain. JAMA Neurol. 2013;70:623–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Thompson A, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Okuda DT, Mowry EM, Beheshtian A, et al. Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology. 2009;72:800–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Bo L, Vedeler CA, Nyland HI, et al. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol. 2003;62:723–32.PubMedCrossRefGoogle Scholar
  24. 24.
    Calabrese M, Battaglini M, Giorgio A, et al. Imaging distribution and frequency of cortical lesions in patients with multiple sclerosis. Neurology. 2010;75:1234–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Shinoda K, Matsushita T, Nakamura Y, et al. HLA-DRBI04:05 allele is associated with intracortical lesions on 3-dimensional double inversion recovery images in Japanese patients with multiple sclerosis. Mult Scler. 2018;24:710–20.PubMedCrossRefGoogle Scholar
  26. 26.
    De Stefano N, Stromillo ML, Giorgio A, et al. Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2016;87:93–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Lassmann H, Raine CS, Antel J, Prineas JW. Immunopathology of multiple sclerosis: report on an international meeting held at the institute of neurology of the University of Vienna. J Neuroimmunol. 1998;86:213–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Kuhlmann T, Ludwin S, Prat A, Antel J, Bruck W, Lassmann H. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 2017;133:13–24.PubMedCrossRefGoogle Scholar
  29. 29.
    Babbe H, Roers A, Waisman A, et al. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med. 2000;192:393–404.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Patrikios P, Stadelmann C, Kutzelnigg A, et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain. 2006;129:3165–72.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Patani R, Balaratnam M, Vora A, Reynolds R. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol. 2007;33:277–87.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Prineas JW, Barnard RO, Revesz T, Kwon EE, Sharer L, Cho ES. Multiple sclerosis. Pathology of recurrent lesions. Brain. 1993;116:681–93.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Reynolds R, Roncaroli F, Nicholas R, Radotra B, Gveric D, Howell O. The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathol. 2011;122:155–70.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Benarroch EE. Oligodendrocytes. Susceptibility to injury and involvement in neurologic disease. Neurology. 2009;72:1779–85.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci. 2000;20:6404–12.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med. 2002;346:165–73.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Satoh J, Tabunoki H, Yamamura T, Arima K, Konno H. TROY and LINGO-1 expression in astrocytes and macrophages/microglia in multiple sclerosis lesions. Neuropathol Appl Neurobiol. 2007;33:99–107.CrossRefGoogle Scholar
  38. 38.
    Mi S, Miller RH, Lee X, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci. 2005;8:745–51.CrossRefGoogle Scholar
  39. 39.
    Charles P, Reynolds R, Seilhean D, et al. Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain. 2002;125:1972–9.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kotter MR, Li WW, Zhao C, Franklin RJ. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci. 2006;26:328–32.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Stoffels JM, de Jonge JC, Stancic M, et al. Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. Brain. 2013;136:116–31.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Ferguson B, Matyszak MK, Esiri MM, Perry VH. Axonal damage in acute multiple sclerosis lesions. Brain. 1997;120:393–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Brück W. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain. 2002;125:2202–12.CrossRefGoogle Scholar
  44. 44.
    Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338:278–85.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Dutta R, McDonough J, Yin X, et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol. 2006;59:478–89.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Fisniku LK, Chard DT, Jackson JS, et al. Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann Neurol. 2008;64:247–54.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Fisher E, Lee JC, Nakamura K, Rudick RA. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol. 2008;64:255–65.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kutzelnigg A, Lucchinetti CF, Stadelmann C, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128:2705–12.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Vercellino M, Plano F, Votta B, Mutani R, Giordana MT, Cavalla P. Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol. 2005;64:1101–7.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bonati U, Fisniku LK, Altmann DR, et al. Cervical cord and brain grey matter atrophy independently associate with long-term MS disability. J Neurol Neurosurg Psychiatry. 2011;82:471–2.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Geurts JJ, Pouwels PJ, Uitdehaag BM, Polman CH, Barkhof F, Castelijns JA. Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology. 2005;236:254–60.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Calabrese M, Filippi M, Gallo P. Cortical lesions in multiple sclerosis. Nat Rev Neurol. 2010;6:438–44.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Bö L, Vedeler CA, Nyland H, Trapp BD, Mörk SJ. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult Scler. 2003;9:323–31.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Peterson JW, Bö L, Mörk S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol. 2001;50:389–400.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Magliozzi R, Howell OW, Reeves C, et al. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol. 2010;68:477–93.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Howell OW, Reeves CA, Nicholas R, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain. 2011;134:2755–71.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Magliozzi R, Howell O, Vora A, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007;130:1089–104.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Magliozzi R, Howell OW, Nicholas R, et al. Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann Neurol. 2018;83:739–55.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Campbell GR, Ziabreva I, Reeve AK, et al. Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol. 2011;69:481–92.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Mahad DJ, Ransohoff RM. The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Semin Immunol. 2003;15:23–32.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Saha RN, Pahan K. Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal. 2006;8:929–47.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Antony JM, van Marle G, Opii W, et al. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci. 2004;7:1088–95.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Moore CS, Abdullah SL, Brown A, Arulpragasam A, Crocker SJ. How factors secreted from astrocytes impact myelin repair. J Neurosci Res. 2011;89:13–21.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Gallo V, Armstrong RC. Myelin repair strategies: a cellular view. Curr Opin Neurol. 2008;21:278–83.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Allaman I, Bélanger M, Magistretti PJ. Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci. 2011;34:76–87.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Voskuhl RR, Peterson RS, Song B, et al. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci. 2009;29:11511–22.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    International Multiple Sclerosis Genetics Consortium, Patsopoulos N, Baranzini SE, Santaniello A, et al. The Multiple Sclerosis Genomic Map: role of peripheral immune cells and resident microglia in susceptibility. BioRxiv. 2017;10.1101/143933.Google Scholar
  68. 68.
    Baranzini SE, Oksenberg JR. The genetics of multiple sclerosis: from 0 to 200 in 50 years. Trends Genet. 2017;33:960–70.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Nischwitz S, Müller-Myhsok B, Weber F. Risk conferring genes in multiple sclerosis. FEBS Lett. 2011;585:3789–97.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Marrosu MG, Murru MR, Costa G, et al. DRB1-DQA1-DQB1 loci and multiple sclerosis predisposition in the Sardinian population. Hum Mol Genet. 1998;7:1235–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Marrosu MG, Sardu C, Cocco E, et al. Bias in parental transmission of the HLA-DR3 allele in Sardinian multiple sclerosis. Neurology. 2004;63:1084–6.PubMedCrossRefGoogle Scholar
  72. 72.
    International Multiple Sclerosis Genetics C, International IBDGC, International IBDGCI. Class II HLA interactions modulate genetic risk for multiple sclerosis. Nat Genet. 2015;47:1107–13.CrossRefGoogle Scholar
  73. 73.
    Okuda DT, Srinivasan R, Oksenberg JR, et al. Genotype-Phenotype correlations in multiple sclerosis: HLA genes influence disease severity inferred by 1HMR spectroscopy and MRI measures. Brain. 2009;132:250–9.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Isobe N, Keshavan A, Gourraud PA, et al. Association of HLA genetic risk burden with disease phenotypes in multiple sclerosis. JAMA Neurol. 2016;73:795–802.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Yoshimura S, Isobe N, Yonekawa T, et al. South Japan Multiple Sclerosis Genetics Consortium. Genetic and infectious profiles of Japanese multiple sclerosis patients. PLoS One. 2012;7:e48592.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Marrosu MG, Cocco E, Lai M, Spinicci G, Pischedda MP, Contu P. Patients with multiple sclerosis and risk of type 1 diabetes mellitus in Sardinia, Italy: a cohort study. Lancet. 2002;359:1461–5.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Cocco E, Sardu C, Lai M, Spinicci G, Contu P, Marrosu MG. Anticipation of age at onset in multiple sclerosis: a Sardinian cohort study. Neurology. 2004;62:1794–8.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Matsushita T, Matsuoka T, Isobe N, et al. Association of the HLA-DPB1∗0501 allele with anti-aquaporin-4 antibody positivity in Japanese patients with idiopathic central nervous system demyelinating disorders. Tissue Antigens. 2008;73:171–6.CrossRefGoogle Scholar
  79. 79.
    Qiu W, James I, Carroll WM, Mastaglia FL, Kermode AG. HLA-DR allele polymorphism and multiple sclerosis in Chinese populations: a meta-analysis. Mult Scler. 2010;17:382–8.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Fujisao S, Matsushita S, Nishi T, Nishimura Y. Identification of HLA-DR9 (DRB1∗0901)-binding peptide motifs using a phage fUSE5 random peptide library. Hum Immunol. 1996;45:131–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Pandit L, Ban M, Sawcer S, et al. Evaluation of the established non-MHC multiple sclerosis loci in an Indian population. Mult Scler. 2011;17:139–43.PubMedCrossRefGoogle Scholar
  82. 82.
    Fang L, Isobe N, Yoshimura S, et al. Interleukin-7 receptor alpha gene polymorphism influences multiple sclerosis risk in Asians. Neurology. 2011;76:2125–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Handel AE, Giovannoni G, Ebers GC, Ramagopalan SV. Environmental factors and their timing in adult-onset multiple sclerosis. Nat Rev Neurol. 2010;6:156–66.PubMedCrossRefGoogle Scholar
  84. 84.
    Willer CJ, Dyment DA, Risch NJ, Sadovnick AD, Ebers GC, Canadian Collaborative Study Group. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc National Acad Sci USA. 2003;100:12877–82.CrossRefGoogle Scholar
  85. 85.
    Dobson R, Giovannoni G, Ramagopalan S. The month of birth effect in multiple sclerosis: systematic review, meta-analysis and effect of latitude. J Neurol Neurosurg Psychiatry. 2013;84:427–32.PubMedCrossRefGoogle Scholar
  86. 86.
    Panitch HS. Influence of infection on exacerbations of multiple sclerosis. Ann Neurol. 1994;36 Suppl:S25–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part II: noninfectious factors. Ann Neurol. 2007;61:504–13.PubMedCrossRefGoogle Scholar
  88. 88.
    Ramagopalan S, Dobson R, Meier U, Giovannoni G. Multiple sclerosis: risk factors, prodromes, and potential causal pathways. Lancet Neurol. 2010;9:727–39.PubMedCrossRefGoogle Scholar
  89. 89.
    Niino M, Sato S, Fukazawa T, Masaki K, Miyazaki Y, Matsuse D, et al. Decreased serum vitamin D levels in Japanese patients with multiple sclerosis. J Neuroimmunol. 2015;279:40–5.PubMedCrossRefGoogle Scholar
  90. 90.
    O’Gotmsn C, Lucas R, Taylor B. Environmental risk factors for multiple sclerosis: a review with a focus on molecular mechanisms. Int J Mol Sci. 2012;13:11718–52.CrossRefGoogle Scholar
  91. 91.
    Hedstrom AK, Baarnhielm M, Olsson T, Alfredsson L. Tobacco smoking, but not Swedish snuff use, increases the risk of multiple sclerosis. Neurology. 2009;73:696–701.PubMedCrossRefGoogle Scholar
  92. 92.
    Yazdanbakhsh M, Kremsner PG, van Ree R. Allergy, parasites, and the hygiene hypothesis. Science. 2002;296:490–4.PubMedCrossRefGoogle Scholar
  93. 93.
    Leibowitz U, Antonovsky A, Medalie JM, Smith HA, Halpern L, Alter M. Epidemiological study of multiple sclerosis in Israel. Part II. Multiple sclerosis and level of sanitation. J Neurol Neurosurg Psychiatry. 1966;29:60–8.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ponsonby AL, van der Mei I, Dwyer T, et al. Exposure to infant siblings during early life and risk of multiple sclerosis. JAMA. 2005;293:463–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Li W, Minohara M, Su JJ, et al. Helicobacter pylori infection is a potential protective factor against conventional multiple sclerosis in the Japanese population. J Neuroimmunol. 2007;184:227–31.PubMedCrossRefGoogle Scholar
  96. 96.
    Pedrini MJ, Seewann A, Bennett KA, et al. Helicobacter pylori infection as a protective factor against multiple sclerosis risk in females. J Neurol Neurosurg Psychiatry. 2015;86:603–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Graham DY. Helicobacter pylori: its epidemiology and its role in duodenal ulcer disease. J Gastroenterol Hepatol. 1991;6:105–13.PubMedCrossRefGoogle Scholar
  98. 98.
    Horiuchi T, Ohkusa T, Watanabe M, Kobayashi D, Miwa H, Eishi Y. Helicobacter pylori DNA in drinking water in Japan. Microbiol Immunol. 2001;45:515–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Liu AH, Murphy JR. Hygiene hypothesis: fact or fiction? J Allergy Clin Immunol. 2003;111:471–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol. 2007;61:288–99.PubMedCrossRefGoogle Scholar
  101. 101.
    Levin LI, Munger KL, O’Reilly EJ, Falk KI, Ascherio A. Primary infection with the Epstein-Barr virus and risk of multiple sclerosis. Ann Neurol. 2010;67:824–30.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Lünemann JD, Tintoré M, Messmer B, et al. Elevated EBNA immune responses predict conversion to multiple sclerosis. Ann Neurol. 2010;67:159–69.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Lucas RM, Hughes AM, Lay MLJ. Epstein-Barr virus and multiple sclerosis. J Neurol Neurosurg Psychiatry. 2011;82:1142–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Xiao D, Ye X, Zhang N, et al. A meta-analysis of interaction between Epstein-Barr virus and HLA-DRB1∗15:01 on risk of multiple sclerosis. Sci Rep. 2015;5:18083.  https://doi.org/10.1038/srep18083.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Sundströom P, Nyströom L, Jidell E, Hallmans G. EBNA-1 reactivity and HLA DRB1∗1501 as statistically independent risk factors for multiple sclerosis: a case-control study. Mult Scler. 2008;14:1120–222.CrossRefGoogle Scholar
  106. 106.
    Lünemann JD, Jelcić I, Roberts S, Lutterotti A, Tackenberg B, Martin R, Münz C. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J Exp Med. 2008;205:1763–173.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Gabibov AG, Belogurov AA Jr, Lomakin YA, et al. Combinatorial antibody library from multiple sclerosis patients reveals antibodies that cross-react with myelin basic protein and EBV antigen. FASEB J. 2011;25:4211–21.PubMedCrossRefGoogle Scholar
  108. 108.
    GC E, Sadovnick AD, Dyment DA, Yee IM, Willer CJ, Risch N. Parent-of-origin effect in multiple sclerosis: observations in half-siblings. Lancet. 2004;363:1773–4.CrossRefGoogle Scholar
  109. 109.
    Panitch HS, Hirsch RL, Haley AS, Johnson KP. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet. 1987;1:893–5.PubMedCrossRefGoogle Scholar
  110. 110.
    Minohara M, Ochi H, Matsushita S, Irie A, Nishimura Y, Kira J. Differences between T-cell reactivities to major myelin protein-derived peptides in opticospinal and conventional forms of multiple sclerosis and healthy controls. Tissue Antigens. 2001;57:447–56.PubMedCrossRefGoogle Scholar
  111. 111.
    Ishizu T, Osoegawa M, Mei FJ, et al. Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain. 2005;128:988–1002.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Durelli L, Conti L, Clerico M, et al. T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-beta. Ann Neurol. 2009;65:499–509.PubMedCrossRefGoogle Scholar
  113. 113.
    Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012;12:623–35.PubMedCrossRefGoogle Scholar
  114. 114.
    Bechmann I, Galea I, Perry VH. What is the blood-brain barrier (not)? Trends Immunol. 2007;28:5–11.PubMedCrossRefGoogle Scholar
  115. 115.
    Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T. Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol. 1998;161:3767–75.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol. 2004;55:458–68.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Meinl E, Krumbholz M, Hohlfeld R. B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation. Ann Neurol. 2006;59:880–92.PubMedCrossRefGoogle Scholar
  118. 118.
    Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358:676–88.PubMedCrossRefGoogle Scholar
  119. 119.
    Sorensen PS, Lisby S, Grove R, et al. Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: a phase 2 study. Neurology. 2014;82:573–81.PubMedCrossRefGoogle Scholar
  120. 120.
    Montalban X, Hauser SL, Kappos L, et al. ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376:209–20.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Stadelmann C, Wegner C, Brück W. Inflammation, demyelination, and degeneration - recent insights from MS pathology. Biochim Biophys Acta. 2011;1812:275–82.PubMedCrossRefGoogle Scholar
  122. 122.
    Breij EC, Brink BP, Veerhuis R, et al. Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol. 2008;63:16–25.PubMedCrossRefGoogle Scholar
  123. 123.
    Srivastava R, Aslam M, Kalluri SR, et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. N Engl J Med. 2012;367:115–23.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Confavreux C, Vukusic S, Moreau T, Adeleine P. Relapses and progression of disability in multiple sclerosis. N Engl J Med. 2000;343:1430–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Kremenchutzky M, Rice GP, Baskerville J, Wingerchuk DM, Ebers GC. The natural history of multiple sclerosis: a geographically based study 9: observations on the progressive phase of the disease. Brain. 2006;129:584–94.PubMedCrossRefGoogle Scholar
  126. 126.
    Lunde HMB, Assmus J, Myhr KM, Bø L, Grytten N. Survival and cause of death in multiple sclerosis: a 60-year longitudinal population study. J Neurol Neurosurg Psychiatry. 2017;88:621–5.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Confavreux C, Vukusic S. Age at disability milestones in multiple sclerosis. Brain. 2006;129:595–605.PubMedCrossRefGoogle Scholar
  128. 128.
    Skoog B, Runmarker B, Winblad S, Ekholm S, Andersen O. A representative cohort of patients with non-progressive multiple sclerosis at the age of normal life expectancy. Brain. 2012;135:900–11.PubMedCrossRefGoogle Scholar
  129. 129.
    Thompson A, Barranzini S, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018;391:1622–36.PubMedCrossRefGoogle Scholar
  130. 130.
    Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T. Rate of pregnancy-related relapse in multiple sclerosis. N Engl J Med. 1998;339:285–91.PubMedCrossRefGoogle Scholar
  131. 131.
    Poser S, Poser W. Multiple sclerosis and gestation. Neurology. 1983;33:1422–7.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Ontaneda D, Fox RJ, Chataway J. Clinical trials in progressive multiple sclerosis: lessons learned and future perspectives. Lancet Neurol. 2015;14:208–23.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Rae-Grant A, Day GS, Marrie RA, et al. Practice guideline recommendations summary: disease-modifying therapies for adults with multiple sclerosis: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;90:777–88.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Gold R, Kappos L, Douglas MD, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012;367:1098–107.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Fox RJ, Miller DH, Theodore Phillips J, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med. 2012;367:1087–97.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Berger JR. Classifying PML risk with disease modifying therapies. Mult Scler Relat Disord. 2017;12:59–63.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Kappos L, Radue EW, O’Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362:387–401.CrossRefGoogle Scholar
  138. 138.
    Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362:402–15.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Arvin AM, Wolinsky JS, Kappos L, Morris MI. Varicella-zoster virus infections in patients treated with fingolimod: risk assessment and consensus recommendations for management. JAMA Neurol. 2015;72:31–9.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    De Stefano N, Tomic D, Radue EW, Sprenger T, Meier DP, Hàring D, Sormani MP. Effect of fingolimod on diffuse brain tissue damage in relapsing-remitting multiple sclerosis patients. Mult Scler Relat Disord. 2016;7:98–101.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Coisne C, Mao W, Engelhardt B. Cutting edge: natalizumab blocks adhesion but not initial contact of human T cells to the blood-brain barrier in vivo in an animal model of multiple sclerosis. J Immunol. 2009;182:5909–13.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Polman CH, O’Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354:899–910.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Plavina T, Subramanyam M, Bloomgren G, et al. Anti-JC virus antibody levels in serum or plasma further define risk of natalizumab-associated progressive multifocal leukoencephalopathy. Ann Neurol. 2014;76:802–12.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Coles AJ, Compston DA, Selmaj KW, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359:1786–801.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Cossburn M, Pace AA, Jones J, et al. Autoimmune disease after alemtuzumab treatment for multiple sclerosis in a multicenter cohort. Neurology. 2011;77:573–9.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Miller AE, Wolinsky JS, Kappos L, et al. Oral teriflunomide for patients with a first clinical episode suggestive of multiple sclerosis (TOPIC): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13:977–86.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Giovannoni G, Comi G, Cook S, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 2010;362:416–26.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Kappos L, Bar-Or A, Cree BA, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet. 2018;391:1263–73.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Cohen JA, Arnold DL, Comi G, et al. Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15:373–81.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Choi JW, Gardell SE, Herr DR, et al. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci U S A. 2011;108:751–6.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    O’Sullivan SA, O’Sullivan C, Healy LM, Dev KK, Sheridan GK. Sphingosine 1-phosphate receptors regulate TLR 4-induced CXCL 5 release from astrocytes and microglia. J Neurochem. 2018;144:736–47.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33:1444–52.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of NeurologyNeurological Institute, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
  2. 2.Department of Neurological TherapeuticsNeurological Institute, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan

Personalised recommendations