Modalities Based on Double Negation

  • József DombiEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 981)


Modal operators play an important role in fuzzy theory, and in recent years researchers have devoted more effort on this topic. Here we concentrate on continuous strictly monotonously increasing Archimedian t-norms. In our study, we will construct modal operators related to negation operators and we introduce graded modal operators.


Negation Modalities Pliant logic Necessity and possibility operators 


  1. 1.
    Cintula, P., Klement, E.P., Mesiar, R., Navara, M.: Fuzzy logics with an additional involutive negation. Fuzzy Sets Syst. 161, 390–411 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dombi, J.: Towards a general class of operators for fuzzy systems. IEEE Trans. Fuzzy Syst. 16, 477–484 (2008)CrossRefGoogle Scholar
  3. 3.
    Dombi, J.: De Morgan systems with an infinitely many negations in the strict monotone operator case. Inf. Sci. 181, 1440–1453 (2011)CrossRefGoogle Scholar
  4. 4.
    Dombi, J.: On a certain class of aggregative operators. Inf. Sci. 245(1), 313–328 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Esteva, F., Godo, L., Hájek, P., Navara, M.: Residuated fuzzy logics with an involutive negation. Arch. Math. Log. 39(2), 103–124 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Esteva, F., Godo, L., Noguera, C.: A logical approach to fuzzy truth hedges. Inf. Sci. 232, 366–385 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gottwald, S., Hájek, P.: Triangular norm-based mathematical fuzzy logics. Logical Algebraic, Analytic and Probabilistic Aspects of Triangular Norms, pp. 275–299 (2005)Google Scholar
  8. 8.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)CrossRefGoogle Scholar
  9. 9.
    Łukasiewicz, J.: Two-valued logic. Przeglad Filozoficzny 13, 189–205 (1921)zbMATHGoogle Scholar
  10. 10.
    Flaminio, T., Marchioni, E.: T-norm-based logics with an independent involutive negation. Fuzzy Sets Syst. 157(24), 3125–3144 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Orlowska, E.: A logic of indiscernibility relations. LNCS, vol. 208, pp. 177–186. Springer, Berlin (1985)Google Scholar
  12. 12.
    Pavelka, J.: On fuzzy logic I. Many-valued rules of inference. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 25, 45–52 (1979)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Trillas, E.: Sobre functiones de negacion en la teoria de conjuntas difusos. Stochastica 3, 47–60 (1979)MathSciNetGoogle Scholar
  14. 14.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning, part 1. Inf. Sci. 8, 199–249 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of SzegedSzegedHungary

Personalised recommendations