Advertisement

Construction of Fuzzy Implication Functions Based on F-chains

  • Radko MesiarEmail author
  • Anna Kolesárová
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 981)

Abstract

In this paper, we present a construction method for fuzzy implication functions based on F-chains. Using this method, which comes from the theory of aggregation functions, one can construct from any given fuzzy implication function a new one. We discuss some properties of fuzzy implication functions which are preserved by this construction, and also provide several examples. Moreover, we introduce for fuzzy implication functions ordinal sums based on F-chains in the case of a single fuzzy implication function as well as in the case of n fuzzy implication functions.

Keywords

Aggregation function Fuzzy implication function F-chain Ordinal sum of fuzzy implication functions 

Notes

Acknowledgement

R. Mesiar kindly acknowledges the support of the grant VEGA 1/0006/19 and A. Kolesárová is grateful for the support of the grant VEGA 1/0614/18.

References

  1. 1.
    Aguiló, I., Suñer, J., Torrens, J.: New types of contrapositivisation of fuzzy implications with respect to fuzzy negations. Inform. Sci. 322, 223–236 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aguiló, I., Suñer, J., Torrens, J.: A new look on fuzzy implication functions: FNI-implications. In: Carvalho, J.P., et al. (eds.) Proceedings of the 16th International Conference IPMU 2016, Part I, Part of the Communications in Computer and Information Science, vol. 610, pp. 375–386. Springer (2016)Google Scholar
  3. 3.
    Baczyński, M., Beliakov, G., Bustince, H., Pradera, A.: Advances in Fuzzy Implication Functions. Sudies in Fuzziness and Soft Computing Series, vol. 300. Springer, Heidelberg (2013)Google Scholar
  4. 4.
    Baczyński, M., Jayaram, B.: Fuzzy Implications. Sudies in Fuzziness and Soft Computing Series, vol. 231. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Baczyński, M., Jayaram, B., Massanet, S., Torrens, J.: Fuzzy implications: past, present, and future. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 183–202. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  6. 6.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  7. 7.
    Beliakov, G., Bustince, H., Calvo, T.: A Practical Guide to Averaging Functions. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  8. 8.
    Calvo, T., Kolesárová, A., Komorníková, M., Mesiar, R.: Aggregation operators: properties, classes and construction methods. In: Calvo, T., Mayor, G., Mesiar, R. (eds.) Aggregation Operators. New Trends and Applications, pp. 3–107. Physica-Verlag, Heidelberg (2002)Google Scholar
  9. 9.
    De Baets, B., Mesiar, R.: Ordinal sums of aggregation operators. In: Bouchon-Meunier, B., et al. (eds.) Technologies for Constructing Intelligent Systems 2, STUDFUZZ, vol. 90, pp. 137–147 (2002)Google Scholar
  10. 10.
    Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  11. 11.
    Jin, L., Mesiar, R., Kalina, M., Špirková, J., Borkotokey, S.: Generalized phi-transformation of aggregation funtions. Fuzzy Sets and Systems.  https://doi.org/10.1016/j.fss.2018.09.016
  12. 12.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  13. 13.
    Kolesárová, A., Mesiar, R.: On linear and quadratic constructions of aggregation functions. Fuzzy Sets Syst. 268, 1–14 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kolesárová, A., Mayor, G., Mesiar, R.: Quadratic construction of copulas. Inform. Sci. 310, 69–76 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kolesárová, A., Massanet, S., Mesiar, R., Riera, J.V., Torrens, J.: Polynomial constructions of fuzzy implication functions: the quadratic case. Inform. Sci. (2018, submitted)Google Scholar
  16. 16.
    Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15(6), 1107–1121 (2007)CrossRefGoogle Scholar
  17. 17.
    Massanet, S., Torrens, J.: On some properties of threshold generated implications. Fuzzy Sets Syst. 205, 30–49 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Massanet, S., Torrens, J.: Threshold generation method of construction of a new implication from two given ones. Fuzzy Sets Syst. 205, 50–75 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Massanet, S., Torrens, J.: On the vertical threshold method of fuzzy implication and its properties. Fuzzy Sets Syst. 226, 32–52 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Massanet, S., Torrens, J.: An overview of construction methods of fuzzy implications. In: Baczyński, M., Beliakov, G., Bustince, H., Pradera, A. (eds.) Advances in Fuzzy Implication Functions. Sudies in Fuzziness and Soft Computing Series, vol. 300, pp. 1–30. Springer, Heidelberg (2013)Google Scholar
  21. 21.
    Massanet, S., Riera, J.V., Torrens, J.: On linear and quadratic constructions of fuzzy implication functions. In: Medina, J., et al. (eds.) IPMU 2018. CCIS, vol. 853, pp. 623–635. Springer International Publishing AG (2018)Google Scholar
  22. 22.
    Mesiar, R., Kolesárová, A., Bustince, H., Fernandez, J.: Dualities in the class of extended Boolean functions. Fuzzy Sets Syst. 332, 78–92 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pradera, A., Beliakov, G., Bustince, H., De Baets, B.: A review of the relationships between implication, negation and aggregation functions from the point of view of material implication. Inform. Sci. 329, 357–380 (2016)CrossRefGoogle Scholar
  24. 24.
    Shi, Y., Gasse, B., Ruan, D., Kerre, E.: On dependencies and independencies of fuzzy implications axioms. Fuzzy Sets Syst. 161(10), 1388–1405 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Vemuri, N.R., Jayaram, B.: Representation through a monoid on the set of fuzzy implications. Fuzzy Sets Syst. 247, 51–67 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Vemuri, N.R., Jayaram, B.: The Open image in new window -composition of fuzzy implications: closures with respect to properties, powers and families. Fuzzy Sets Syst. 275, 58–87 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Civil EngineeringSlovak University of TechnologyBratislavaSlovakia
  2. 2.Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovakia

Personalised recommendations