Advertisement

Note on Aggregation Functions and Concept Forming Operators

  • Peter ButkaEmail author
  • Jozef Pócs
  • Jana Pócsová
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 981)

Abstract

A certain connection between the theory of aggregation functions and the theory of concept lattices is discussed. We describe a generalization of residuated mappings, convenient for creating a monotone analogue of antitone concept lattices. Examples of such mappings are also presented.

Keywords

Residuated mappings Concept lattice Closure operator Interior operator Formal Concept Analysis 

Notes

Acknowledgments

The first author was supported by the Slovak Research and Development Agency under the contract no. APVV-16-0213. The second author was supported by the project of Grant Agency of the Czech Republic (GAČR) no. 18-06915S and by the Slovak Research and Development Agency under the contract no. APVV-16-0073. The third author was supported by the Slovak VEGA Grant 1/0365/19.

References

  1. 1.
    Antoni, L., Krajči, S., Krídlo, O., Macek, B., Pisková, L.: On heterogeneous formal contexts. Fuzzy Set. Syst. 234, 22–33 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Antoni, L., Krajči, S., Krídlo, O.: On fuzzy generalizations of concept lattices. Stud. Comput. Intell. 758, 79–103 (2018)zbMATHGoogle Scholar
  3. 3.
    Bartl, E., Konecny, J.: L-concept analysis with positive and negative attributes. Inf. Sci. 360, 96–111 (2016)CrossRefGoogle Scholar
  4. 4.
    Bělohlávek, R., Konecny, J.: Concept lattices of isotone vs. antitone Galois connections in graded setting: mutual reducibility revisited. Inf. Sci. 199, 133–137 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brajerčík, J., Demko, M.: On sheaf spaces of partially ordered quasigroups. Quasigroups Relat. Syst. 22(1), 51–58 (2014)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Butka, P., Pócs, J., Pócsová, J.: On equivalence of conceptual scaling and generalized one-sided concept lattices. Inf. Sci. 259, 57–70 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Demko, M.: On congruences and ideals of partially ordered quasigroups. Czechoslovak Math. J. 58(3), 637–650 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Demko, M.: Lexicographic product decompositions of half linearly ordered loops. Czechoslovak Math. J. 57(2), 607–629 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Derderian, J.-C.: Residuated mappings. Pac. J. Math. 20(1), 35–43 (1967)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)CrossRefGoogle Scholar
  11. 11.
    Georgescu, G., Popescu, A.: Non-dual fuzzy connections. Arch. Math. Log. 43(8), 1009–1039 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Halaš, R., Mesiar, R., Pócs, J.: Description of sup- and inf-preserving aggregation functions via families of clusters in data tables. Inf. Sci. 400401, 173–183 (2017)CrossRefGoogle Scholar
  13. 13.
    Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Set. Syst. 160, 130–144 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Konecny, J.: Isotone fuzzy Galois connections with hedges. Inf. Sci. 181(10), 1804–1817 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Konecny, J., Osicka, P.: Triadic concept lattices in the framework of aggregation structures. Inf. Sci. 279, 512–527 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Pócs, J.: On possible generalization of fuzzy concept lattices using dually isomorphic retracts. Inf. Sci. 210, 89–98 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rodriguez-Jimenez, J.M., Cordero, P., Enciso, M., Mora, A.: A generalized framework to consider positive and negative attributes in formal concept analysis. In: 11th International Conference on Concept Lattices and Their Applications (CLA 2014), vol. 1252, pp. 267–278. CEUR Workshop Proceedings (2014)Google Scholar
  18. 18.
    Rodriguez-Jimenez, J.M., Cordero, P., Enciso, M., Mora, A.: Negative attributes and implications in formal concept analysis. Procedia Comput. Sci. 31, 758–765 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and InformaticsTechnical University of KošiceKošiceSlovakia
  2. 2.Department of Algebra and Geometry, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
  3. 3.Mathematical InstituteSlovak Academy of SciencesKošiceSlovakia
  4. 4.Institute of Control and Informatization of Production Processes, BERG FacultyTechnical University of KošiceKošiceSlovakia

Personalised recommendations