A Construction Method for t-norms on Bounded Lattices

  • Funda KaraçalEmail author
  • Ümit Ertuğrul
  • M. Nesibe Kesicioğlu
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 981)


In this paper, a construction method on a bounded lattice from a given t-norm on a subinterval of the bounded lattice is presented. The supremum distributivity of the constructed t-norm by the mentioned method has been proven under some special conditions. Giving an example, the constructed t-norm need not be supremum-distributive on any bounded lattice is shown. Moreover, some relationships between the mentioned construction method and the other construction methods in the literature are presented.


t-norm Bounded lattice Construction method Subinterval 


  1. 1.
    Aşıcı, E., Karaçal, F.: On the T-partial order and properties. Inf. Sci. 267, 323–333 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publishers, Providence (1967)zbMATHGoogle Scholar
  3. 3.
    Çaylı, G.D.: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets Syst. 332, 129–143 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Durante, F., Sarkoci, P.: A note on the convex combinations of triangular norms. Fuzzy Sets Syst. 159, 77–80 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Syst. 30, 807–817 (2015)CrossRefGoogle Scholar
  6. 6.
    Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  7. 7.
    Karaçal, F.: On the direct decomposability of strong negations and S-implication operators on product lattices. Inf. Sci. 176, 3011–3025 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Karaçal, F., Khadjiev, D.: \(\vee \)-Distributive and infinitely \(\vee \)-distributive t-norms on complete lattices. Fuzzy Sets Syst. 151, 341–352 (2005)Google Scholar
  9. 9.
    Karaçal, F., Kesicioğlu, M.N.: A T-partial order obtained from t-norms. Kybernetika 47, 300–314 (2011)MathSciNetzbMATHGoogle Scholar
  10. 10.
    İnce, M.A., Karaçal, F.: t-closure operators. Int. J. General Syst.
  11. 11.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  12. 12.
    Menger, K.: Statistical metrics. Proc. Natl. Acad. Sci. U.S.A 8, 535–537 (1942)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mesiar, R., Mesiarová-Zemánková, A.: Convex combinations of continuous t-norms with the same diagonal function. Nonlinear Anal. 69(9), 2851–2856 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157(10), 1403–1416 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Schweizer, B., Sklar, A: Espaces metriques aléatoires. C. R. Acad. Sci. Paris Sér. A 247 2092–2094 (1958)Google Scholar
  16. 16.
    Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10, 313–334 (1960)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsKaradeniz Technical UniversityTrabzonTurkey
  2. 2.Department of MathematicsRecep Tayyip Erdogan UniversityRizeTurkey

Personalised recommendations