Advertisement

On Properties of Internal Uninorms on Bounded Lattices

  • Gül Deniz ÇaylıEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 981)

Abstract

In this paper, we study internal uninorms on bounded lattices. We show that an internal uninorm on a bounded lattice L for the chosen neutral element \(e\in L\backslash \{0,1\}\) does not always exist. We introduce two new construction methods for uninorms on a bounded lattice L based on the existence of a t-norm and a t-conorm, where some necessary and sufficient conditions on its neutral element \(e\in L\backslash \{0,1\}\) are required. These methods also show the existence of internal uninorms on some special bounded lattices.

Keywords

Bounded lattice Internal uninorm Neutral element Uninorm t-norm t-conorm 

References

  1. 1.
    Aşıcı, E.: An order induced by nullnorms and its properties. Fuzzy Sets Syst. 325, 35–46 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aşıcı, E.: On the properties of the F-partial order and the equivalence of nullnorms. Fuzzy Sets Syst. 346, 72–84 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aşıcı, E.: Some remarks on an order induced by Uninorms. In: Kacprzyk, J., et al. (eds.) Advances in Fuzzy Logic and Technology 2017, IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, vol. 641, pp. 69–77. Springer, Cham (2018)Google Scholar
  4. 4.
    Aşıcı, E.: Some notes on the F-partial order. In: Kacprzyk, J., et al. (eds) Advances in Fuzzy Logic and Technology 2017, IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, vol. 641, pp. 78–84. Springer, Cham (2018)Google Scholar
  5. 5.
    Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publishers, Providence (1967)zbMATHGoogle Scholar
  6. 6.
    Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica, Serbia, pp. 61–66 (2014)Google Scholar
  7. 7.
    Bodjanova, S., Kalina, M.: Uninorms on bounded lattices-Recent development. In: Kacprzyk, J., et al. (eds.) Advances in Fuzzy Logic and Technology 2017, IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, vol. 641, pp. 224–234. Springer, Cham (2018)Google Scholar
  8. 8.
    Çaylı, G.D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inf. Sci. 367–368, 221–231 (2016)CrossRefGoogle Scholar
  9. 9.
    Çaylı, G.D., Drygaś, P.: Some properties of idempotent uninorms on a special class of bounded lattices. Inf. Sci. 422, 352–363 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Çaylı, G.D.: On the structure of uninorms on bounded lattices. Fuzzy Sets Syst. 357, 2–26 (2019)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Çaylı, G.D., Karaçal, F., Mesiar, R.: On internal and locally internal uninorms on bounded lattices. Int. J. General Syst. 48(3), 235–259 (2019)MathSciNetCrossRefGoogle Scholar
  12. 12.
    De Baets, B.: Idempotent uninorms. Eur. J. Oper. Res. 118, 631–642 (1999)CrossRefGoogle Scholar
  13. 13.
    De Baets, B., Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on finite ordinal scales. Int. J. Uncertain Fuzziness Knowl.-Based Syst. 17(1), 1–14 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Deschrijver, G.: Uninorms which are neither conjunctive nor disjunctive in interval-valued fuzzy set theory. Inf. Sci. 244, 48–59 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Drewniak, J., Drygaś, P.: On a class of uninorms. Internat J. Uncertain Fuzziness Knowl.-Based Syst. 10, 5–10 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Drygaś, P., Ruiz-Aguilera, D., Torrens, J.: A characterization of uninorms locally internal in A(e) with continuous underlying operators. Fuzzy Sets Syst. 287, 137–153 (2016)CrossRefGoogle Scholar
  17. 17.
    Fodor, J., Yager, R.R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain Fuzziness Knowl.-Based Syst. 5, 411–427 (1997)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  19. 19.
    Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261, 33–43 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Acad. Publ, Dordrecht (2000)CrossRefGoogle Scholar
  21. 21.
    Martin, J., Mayor, G., Torrens, J.: On locally internal monotonic operations. Fuzzy Sets Syst. 137, 27–42 (2003)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mesiarová-Zemánková, A.: The structure of n-contractive t-norms. Int. J. Gen. Syst. 34(5), 625–637 (2005)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mesiarová-Zemánková, A.: A note on decomposition of idempotent uninorms into an ordinal sum of singleton semigroups. Fuzzy Sets Syst. 299, 140–145 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Su, Y., Zong, W., Liu, H.W., Zhang, F.: On migrativity property for uninorms. Inf. Sci. 300, 114–123 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Takács, M.: Lattice ordered monoids and left continuous uninorms and t-norms. In: Castillo, O., et al. (eds.) Theoretical Advances and Applications of Fuzzy Logic and Soft Computing. Advances in Soft Computing, vol. 42, pp. 565–572. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Wang, Z.D., Fang, J.X.: Residual operators of left and right uninorms on a complete lattice. Fuzzy Sets Syst. 160, 22–31 (2009)CrossRefGoogle Scholar
  27. 27.
    Yager, R.R., Rybalov, A.: Uninorms aggregation operators. Fuzzy Sets Syst. 80, 111–120 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations