Unconstrained Optimization

  • H. A. Eiselt
  • Carl-Louis Sandblom
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 282)


This chapter considers a fundamental problem of general optimization theory, namely that of finding the maximal and/or minimal points of a nonlinear function.


  1. Armijo L (1966) Minimization of functions having Lipschitz continuous first partial derivatives. Pacific Journal of Mathematics 16: 1-3MathSciNetCrossRefGoogle Scholar
  2. Avriel M (1976) Nonlinear programming: analysis and methods. Prentice-Hall, New JerseyzbMATHGoogle Scholar
  3. Avriel M, Wilde DJ (1966) Optimality proof for the symmetric Fibonacci search technique. Fibonacci Quarterly Journal 4: 265-269MathSciNetzbMATHGoogle Scholar
  4. Bazaraa MS, Sherali HD, Shetty CM (2013) Nonlinear programming: theory and algorithms (3rd ed.) Wiley, New YorkzbMATHGoogle Scholar
  5. Bertsekas DP (2016) Nonlinear programming (3rd ed.) Athena Scientific, Belmont, MAzbMATHGoogle Scholar
  6. Broyden CG (1970) The convergence of a class of double rank minimization algorithms. Parts I and II of the Journal for the Institute of Mathematics and its Applications 6: 76-90, 222-231Google Scholar
  7. Cauchy A (1847) Méthode générale pour la résolution des systèmes d’équations simultanées. Comptes rendus de la Academie des Sciences, Paris 25: 536-538Google Scholar
  8. Conn AR, Gould NIM, Orban D, Toint PL (2000) A primal-dual trust-region algorithm for non-convex nonlinear programming. Mathematical Programming B87: 215-249MathSciNetCrossRefGoogle Scholar
  9. Cottle RW, Thapa MN (2017) Linear and nonlinear optimization. Springer-Verlag, Berlin-Heidelberg-New YorkCrossRefGoogle Scholar
  10. Danilin YM, Piyavskii SA (1967) On an algorithm for finding the absolute minimum. Theory of Optimal Decisions, vol. II. Institute of Cybernetics, Kiev, (in Russian).Google Scholar
  11. Davidon WC (1959) Variable metric method for minimization. Research and Development Report ANL-5990 (Rev.) Argonne National Laboratory, U. S. Atomic Energy CommissionGoogle Scholar
  12. Dixon LCW (1972) Nonlinear optimisation. English Universities Press, London.zbMATHGoogle Scholar
  13. Eiselt HA, Pederzoli G, Sandblom C-L (1987) Continuous optimization models. W. de Gruyter, Berlin – New York.Google Scholar
  14. Fletcher R (1970) A new approach to variable metric algorithms. The Computer Journal 13: 317-322CrossRefGoogle Scholar
  15. Fletcher R, Powell MJD (1963) A rapidly convergent descent method for minimization. The Computer Journal 6: 163-168MathSciNetCrossRefGoogle Scholar
  16. Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. The Computer Journal 7: 149-154MathSciNetCrossRefGoogle Scholar
  17. Fröberg C-E (1969) Introduction to numerical analysis (2nd ed.) Addison-Wesley, Reading, MAGoogle Scholar
  18. Goldfarb D (1970) A family of variable metric methods derived by variational means. Mathematics of Computation 24: 23-26MathSciNetCrossRefGoogle Scholar
  19. Goldstein AA (1965) On steepest descent. SIAM Journal on Control 3: 147-151.MathSciNetzbMATHGoogle Scholar
  20. Hansen P, Jaumard B (1995) Lipschitz optimization. pp 407-493 in Horst R, Pardalos PM (eds.) Handbook of global optimization. Kluwer, Boston, MACrossRefGoogle Scholar
  21. Horst R, Pardalos PM, Thoai NV (2000) Introduction to global optimization, vol. 2. Kluwer, Dordrecht, The NetherlandsCrossRefGoogle Scholar
  22. Kiefer J (1953) Sequential minimax search for a maximum. Proceedings of the American Mathematical Society 4: 502-506MathSciNetCrossRefGoogle Scholar
  23. Luenberger DL, Ye Y (2008) Linear and nonlinear programming (3rd ed.) Springer-Verlag, Berlin-Heidelberg-New YorkCrossRefGoogle Scholar
  24. Marsten RE, Hogan WW, Blankenship JW (1975) The Boxstep Method for large-scale optimization. Operations Research 23/3: 389-405MathSciNetCrossRefGoogle Scholar
  25. Nelder JA, Mead R (1965) A simplex method for function minimization. The Computer Journal 7: 308-313MathSciNetCrossRefGoogle Scholar
  26. Pintér JD (1996) Global optimization in action. Kluwer, Boston, MACrossRefGoogle Scholar
  27. Piyavskii SA (1972) An algorithm for finding the absolute extremum of a function. USSR Computational Mathematics and Mathematical Physics 12: 57-67MathSciNetCrossRefGoogle Scholar
  28. Powell MJD (1970) A new algorithm for unconstrained optimization. In: Rosen JB, Mangasarian OL, Ritter K (eds.), Nonlinear programming. Academic Press, pp. 31-36CrossRefGoogle Scholar
  29. Shanno DF (1970) Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation 24: 647-656MathSciNetCrossRefGoogle Scholar
  30. Shubert BO (1972) A sequential method seeking the global maximum of a function. SIAM Journal of Numerical Analysis 9: 379-388MathSciNetCrossRefGoogle Scholar
  31. Spendley W, Hext GR, Himsworth FR (1962) Sequential application of simplex designs in optimization and evolutionary operation. Technometrics 4: 441-461MathSciNetCrossRefGoogle Scholar
  32. Sun W, Yuan Y (2006) Optimization theory and methods. Nonlinear programming. Springer-Verlag, Berlin-Heidelberg-New YorkzbMATHGoogle Scholar
  33. Wolfe P (1969) Convergence conditions for ascent methods. SIAM Review 11, 226-235MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • H. A. Eiselt
    • 1
  • Carl-Louis Sandblom
    • 2
  1. 1.Faculty of ManagementUniversity of New BrunswickFrederictonCanada
  2. 2.Department of Industrial EngineeringDalhousie UniversityHalifaxCanada

Personalised recommendations