Advertisement

Biopolymer-Based Hydrogels for Agriculture Applications: Swelling Behavior and Slow Release of Agrochemicals

  • Bárbara TomadoniEmail author
  • Claudia Casalongué
  • Vera A. Alvarez
Chapter

Abstract

Hydrogels are cross-linked polymers that can absorb and hold large amounts of water and aqueous solutions due to the presence of hydrophilic functional groups in their 3D network. These materials also serve as vehicles of different active compounds because they can regulate their release rate. Because of such properties, hydrogels are currently used in many areas including agriculture, mainly as water retention agents for soil conditioning, and as carriers of agrochemicals for their slow or sustained-release. However, most of the hydrogels currently available on the market are based on polyacrylamide and acrylate derivatives, which means that they are not completely biodegradable, i.e. are considered as potential soil contaminants and present certain degree of toxicity. In this context, the development of biodegradable hydrogels for their use in agriculture is gaining interest worldwide. Biopolymers such as chitosan, cellulose, alginate and their derivatives are being explored due to their biocompatibility, biodegradability and low cost. Briefly, in this chapter, recent studies on biopolymer-based hydrogels for their use in agriculture are discussed in terms of their synthesis, swelling behavior, as well as their uses for slow and controlled release of agrochemicals.

Keywords

Fertilizers Herbicides 

Notes

Acknowledgements

The authors would like to thank Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Universidad Nacional de Mar del Plata (UNMdP), Argentina. BT, CC and VAA are members of CONICET research staff.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Abdel-Raouf, M. E., El-Saeed, S. M., Zaki, E. G., & Al-Sabagh, A. M. (2018). Green chemistry approach for preparation of hydrogels for agriculture applications through modification of natural polymers and investigating their swelling properties. Egyptian Journal of Petroleum., 27, 1345–1355.  https://doi.org/10.1016/j.ejpe.2018.09.002.CrossRefGoogle Scholar
  2. Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105–121.  https://doi.org/10.1016/j.jare.2013.07.006.CrossRefGoogle Scholar
  3. Aouada, F. A., de Moura, M. R., Orts, W. J., & Mattoso, L. H. C. (2010). Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide. Journal of Materials Science, 45(18), 4977–4985.  https://doi.org/10.1007/s10853-009-4180-6.CrossRefGoogle Scholar
  4. Aouada, F. A., De Moura, M. R., & Mattoso, L. H. C. (2011). Biodegradable hydrogel as delivery vehicle for the controlled release of pesticide. In M. Stoytcheva (Ed.), Pesticides – Formulations, effects, fate (pp. 81–102).  https://doi.org/10.5772/14139.CrossRefGoogle Scholar
  5. Azeem, B., Kushaari, K., Man, Z. B., Basit, A., & Thanh, T. H. (2014). Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release, 181(1), 11–21.  https://doi.org/10.1016/j.jconrel.2014.02.020.CrossRefGoogle Scholar
  6. Bai, C., Zhang, S., Huang, L., Wang, H., Wang, W., & Ye, Q. (2015). Starch-based hydrogel loading with carbendazim for controlled-release and water absorption. Carbohydrate Polymers, 125, 376–383.  https://doi.org/10.1016/j.carbpol.2015.03.004.CrossRefPubMedGoogle Scholar
  7. Bajpai, A. K., & Giri, A. (2003). Water sorption behaviour of highly swelling (carboxy methylcellulose-g-polyacrylamide) hydrogels and release of potassium nitrate as agrochemical. Carbohydrate Polymers, 53(3), 271–279.  https://doi.org/10.1016/S0144-8617(03)00071-7.CrossRefGoogle Scholar
  8. Bawa, P., Pillay, V., Choonara, Y. E., & Du Toit, L. C. (2009). Stimuli-responsive polymers and their applications in drug delivery. Biomedical Materials, 4(2), 109–114.  https://doi.org/10.1007/s10751-011-0451-0.CrossRefGoogle Scholar
  9. Belmokhtar, F. Z., Elbahri, Z., & Elbahri, M. (2018). Preparation and optimization of agrochemical 2,4-D controlled release microparticles using designs of experiments. Journal of the Mexican Chemical Society, 62(1), 1–21.  https://doi.org/10.29356/jmcs.v62i1.579.CrossRefGoogle Scholar
  10. Bencherif, S. A., Siegwart, D. J., Srinivasan, A., Horkay, F., Hollinger, J. O., Washburn, N. R., & Matyjaszewski, K. (2009). Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. Biomaterials, 30(29), 5270–5278.  https://doi.org/10.1016/j.biomaterials.2009.06.011.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bordi, F., Paradossi, G., Rinaldi, C., & Ruzicka, B. (2002). Chemical and physical hydrogels: Two case systems studied by quasi elastic light scattering. Physica A: Statistical Mechanics and its Applications, 304(1–2), 119–128.  https://doi.org/10.1016/s0378-4371(01)00537-4.CrossRefGoogle Scholar
  12. Bortolin, A., Aouada, F. A., Mattoso, L. H. C., & Ribeiro, C. (2013). Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: Evidence of synergistic effects for the slow release of fertilizers. Journal of Agricultural and Food Chemistry, 61(31), 7431–7439.  https://doi.org/10.1021/jf401273n.CrossRefGoogle Scholar
  13. Calabi-Floody, M., Medina, J., Rumpel, C., Condron, L. M., Hernandez, M., Dumont, M., & Mora, M. de la L. (2018). Smart fertilizers as a strategy for sustainable agriculture. In D. L. Sparks (Ed.), Advances in agronomy (Vol. 147, 1st ed.). Elsevier Inc..  https://doi.org/10.1016/bs.agron.2017.10.003.Google Scholar
  14. Cannazza, G., Cataldo, A., de Benedetto, E., Demitri, C., Madaghiele, M., & Sannino, A. (2014). Experimental assessment of the use of a novel superabsorbent polymer (SAP) for the optimization of water consumption in agricultural irrigation process. Water (Switzerland), 6(7), 2056–2069.  https://doi.org/10.3390/w6072056.CrossRefGoogle Scholar
  15. Carson, L. C., & Ozores-Hampton, M. (2013). Factors affecting nutrient availability, placement, rate, and application timing of controlled-release fertilizers for Florida vegetable production using seepage irrigation. HortTechnology, 23(5), 553–562.  https://doi.org/10.21273/horttech.23.5.553.CrossRefGoogle Scholar
  16. Chagas, J. O., Gomes, J. M., de Cunha, I. C. M., de Melo, N. F. S., Fraceto, L. F., da Silva, G. A., & Lobo, F. A. (2018). Polymeric microparticles for modified release of NPK in agricultural applications. Arabian Journal of Chemistry.  https://doi.org/10.1016/j.arabjc.2018.03.007.
  17. Chang, C., Duan, B., Cai, J., & Zhang, L. (2010). Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. European Polymer Journal, 46(1), 92–100.  https://doi.org/10.1016/j.eurpolymj.2009.04.033.CrossRefGoogle Scholar
  18. Chapagain, B. P., Wiesman, Z., Zaccai, M., Imas, P., & Magen, H. (2003). Potassium chloride enhances fruit appearance and improves quality of fertigated greenhouse tomato as compared to potassium nitrate. Journal of Plant Nutrition, 26(3), 643–658.  https://doi.org/10.1081/pln-120017671.CrossRefGoogle Scholar
  19. Chenite, A., Chaput, C., Wang, D., Combes, C., Buschmann, M. D., Hoemann, C. D., Leroux, J. C., Atkinson, B. L., Binette, F., & Selmani, A. (2000). Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials, 21(21), 2155–2161.  https://doi.org/10.1016/S0142-9612(00)00116-2.CrossRefPubMedGoogle Scholar
  20. Conte, R., De Luise, A., Valentino, A., Di Cristo, F., Petillo, O., Riccitiello, F., Riccitiello, F., Di Salle, A., Calarco, A., & Peluso, G. (2019). Hydrogel nanocomposite systems: Characterization and application in drug-delivery systems. In S. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra, & S. Thomas (Eds.), Nanocarriers for drug delivery (pp. 319–349).  https://doi.org/10.1016/B978-0-12-814033-8.00010-2.CrossRefGoogle Scholar
  21. Dai, H., Huang, Y., & Huang, H. (2018). Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydrate Polymers, 185, 1–11.  https://doi.org/10.1016/j.carbpol.2017.12.073.CrossRefPubMedGoogle Scholar
  22. Dailey, O. D. J. (2004). Volatilization of alachlor from polymeric formulations. Journal of Agricultural and Food Chemistry, 52(22), 6742–6746.  https://doi.org/10.1021/jf040034g.CrossRefPubMedGoogle Scholar
  23. Drozdov, A. D. (2015). Swelling of pH-responsive cationic gels: Constitutive modeling and structure–property relations. International Journal of Solids and Structures, 64–65, 176–190.  https://doi.org/10.1016/j.ijsolstr.2015.03.023.CrossRefGoogle Scholar
  24. Ehrenhofer, A., Elstner, M., & Wallmersperger, T. (2018). Normalization of hydrogel swelling behavior for sensoric and actuatoric applications. Sensors and Actuators, B: Chemical, 255. (Part 2, 1343–1353.  https://doi.org/10.1016/j.snb.2017.08.120.CrossRefGoogle Scholar
  25. Ekebafe, L. O., Ogbeifun, D. E., & Okieimen, F. E. (2011). Polymer applications in agriculture. Nigerian Society for Experimental Biology, 23(2), 81–89.  https://doi.org/10.4314/biokem.v23i2.CrossRefGoogle Scholar
  26. Elbarbary, A. M., El-Rehim, H. A. A., El-Sawy, N. M., Hegazy, E. S. A., & Soliman, E. S. A. (2017). Radiation induced crosslinking of polyacrylamide incorporated low molecular weights natural polymers for possible use in the agricultural applications. Carbohydrate Polymers, 176, 19–28.  https://doi.org/10.1016/j.carbpol.2017.08.050.CrossRefPubMedGoogle Scholar
  27. Essawy, H. A., Ghazy, M. B. M., El-Hai, F. A., & Mohamed, M. F. (2016). Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. International Journal of Biological Macromolecules, 89, 144–151.  https://doi.org/10.1016/j.ijbiomac.2016.04.071.CrossRefPubMedGoogle Scholar
  28. Flores Céspedes, F., Pérez García, S., Villafranca Sánchez, M., & Fernández Pérez, M. (2013). Bentonite and anthracite in alginate-based controlled release formulations to reduce leaching of chloridazon and metribuzin in a calcareous soil. Chemosphere, 92(8), 918–924.  https://doi.org/10.1016/j.chemosphere.2013.03.001.CrossRefPubMedGoogle Scholar
  29. Förster, S., & Antonietti, M. (1998). Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Advanced Materials, 10(3), 195–217.  https://doi.org/10.1002/(sici)1521-4095(199802)10:3<195::aid-adma195>3.0.co;2-v.CrossRefGoogle Scholar
  30. França, D., Medina, Â. F., Messa, L. L., Souza, C. F., & Faez, R. (2018). Chitosan spray-dried microcapsule and microsphere as fertilizer host for swellable − controlled release materials. Carbohydrate Polymers, 196, 47–55.  https://doi.org/10.1016/j.carbpol.2018.05.014.CrossRefGoogle Scholar
  31. Gad, Y. H. (2008). Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid)/chitosan hydrogel using gamma irradiation and its application in wastewater treatment. Radiation Physics and Chemistry, 77(9), 1101–1107.  https://doi.org/10.1016/j.radphyschem.2008.05.002.CrossRefGoogle Scholar
  32. González, M. E., Cea, M., Medina, J., González, A., Diez, M. C., Cartes, P., Monreal, C., & Navia, R. (2015). Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Science of the Total Environment, 505, 446–453.  https://doi.org/10.1016/j.scitotenv.2014.10.014.CrossRefPubMedGoogle Scholar
  33. Grillo, R., Pereira, A. E. S., Nishisaka, C. S., de Lima, R., Oehlke, K., Greiner, R., & Fraceto, L. F. (2014a). Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. Journal of Hazardous Materials, 278, 163–171.  https://doi.org/10.1016/j.jhazmat.2014.05.079.CrossRefPubMedGoogle Scholar
  34. Grillo, R., Rosa, A. H., & Fraceto, L. F. (2014b). Poly(ε-caprolactone) nanocapsules carrying the herbicide atrazine: Effect of chitosan-coating agent on physico-chemical stability and herbicide release profile. International journal of Environmental Science and Technology, 11(6), 1691–1700.  https://doi.org/10.1007/s13762-013-0358-1.CrossRefGoogle Scholar
  35. Gross, R. A., & Kalra, B. (2002). Biodegradable polymers for the environment. Science. (New York), 297(5582), 803–807.  https://doi.org/10.1126/science.297.5582.803.CrossRefPubMedGoogle Scholar
  36. Guilherme, M. R., Aouada, F. A., Fajardo, A. R., Martins, A. F., Paulino, A. T., Davi, M. F. T., Rubira, A. F., & Muniz, E. C. (2015). Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. European Polymer Journal, 72, 365–385.  https://doi.org/10.1016/j.eurpolymj.2015.04.017.CrossRefGoogle Scholar
  37. Gulrez, S. K. H., Al-Assaf, S., & Phillips, G. O. (2011). Hydrogels: Methods of preparation, characterisation and applications. In A. Carpi (Ed.), Progress in molecular and environmental bioengineering IntechOpen progress in molecular and environmental bioengineering from analysis and modeling to technology applications Edited by Angelo Carpi Progress in molecular and environmental bioengineering.  https://doi.org/10.5772/24553.CrossRefGoogle Scholar
  38. Gutiérrez, T. J. (2017). Chitosan applications for the food industry. In S. Ahmed & S. Ikram (Eds.), Chitosan: Derivatives, composites and applications (pp. 183–232). WILEY-Scrivener Publisher. EE.UU. ISBN: 978-1-119-36350-7.  https://doi.org/10.1002/9781119364849.ch8.CrossRefGoogle Scholar
  39. Gutiérrez, T. J. (2018a). Processing nano- and microcapsules for industrial applications. In C. M. Hussain (Ed.), Handbook of nanomaterials for industrial applications (pp. 989–1011). Editorial Elsevier. EE.UU. ISBN: 978-0-12-813351-4.  https://doi.org/10.1016/b978-0-12-813351-4.00057-2.CrossRefGoogle Scholar
  40. Gutiérrez, T. J. (2018b). Biodegradability and compostability of food nanopackaging materials. In G. Cirillo, M. A. Kozlowski, & U. G. Spizzirri (Eds.), Composite materials for food packaging (pp. 269–296). WILEY-Scrivener Publisher. EE.UU. ISBN: 978-1-119-16020-5.  https://doi.org/10.1002/9781119160243.ch9.CrossRefGoogle Scholar
  41. Gutiérrez, T. J. (2018c). Biological macromolecule composite films made from Sagu starch and flour/poly(ε-caprolactone) blends processed by blending/thermo molding. Journal Polymers and the Environment, 26(9), 3902–3912.  https://doi.org/10.1007/s10924-018-1268-6.CrossRefGoogle Scholar
  42. Gutiérrez, T. J. (2018d). Are modified pumpkin flour/plum flour nanocomposite films biodegradable and compostable? Food Hydrocolloids, 83, 397–410.  https://doi.org/10.1016/j.foodhyd.2018.05.035.CrossRefGoogle Scholar
  43. Gutiérrez, T. J., & Álvarez, K. (2017). Biopolymers as microencapsulation materials in the food industry. In M. Masuelli & D. Renard (Eds.), Advances in physicochemical properties of biopolymers: Part 2 (pp. 296–322). Bentham Science Publishers.. EE.UU. ISBN: 978-1-68108-545-6. eISBN: 978-1-68108-544-9, 2017.  https://doi.org/10.2174/9781681085449117010009.
  44. Gutiérrez, T. J., & Alvarez, V. A. (2017a). Eco-friendly films prepared from plantain flour/PCL blends under reactive extrusion conditions using zirconium octanoate as a catalyst. Carbohydrate Polymers, 178, 260–269.  https://doi.org/10.1016/j.carbpol.2017.09.026.CrossRefPubMedGoogle Scholar
  45. Gutiérrez, T. J., & Alvarez, V. A. (2017b). Films made by blending poly(ε-caprolactone) with starch and flour from Sagu rhizome grown at the Venezuelan amazons. Journal Polymers and the Environment, 25(3), 701–716.  https://doi.org/10.1007/s10924-016-0861-9.CrossRefGoogle Scholar
  46. Gutiérrez, T. J., Toro-Márquez, L. A., Merino, D., & Mendieta, J. R. (2019). Hydrogen-bonding interactions and compostability of bionanocomposite films prepared from corn starch and nano-fillers with and without added Jamaica flower extract. Food Hydrocolloids, 89, 283–293.  https://doi.org/10.1016/j.foodhyd.2018.10.058.CrossRefGoogle Scholar
  47. Gwon, S. H., Yoon, J., Seok, H. K., Oh, K. H., & Sun, J.-Y. (2015). Gelation dynamics of ionically crosslinked alginate gel with various cations. Macromolecular Research, 23(12), 1112–1116.  https://doi.org/10.1007/s13233-015-3151-9.CrossRefGoogle Scholar
  48. Hamedi, H., Moradi, S., Hudson, S. M., & Tonelli, A. E. (2018). Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydrate Polymers, 199, 445–460.  https://doi.org/10.1016/j.carbpol.2018.06.114.CrossRefPubMedGoogle Scholar
  49. Heinze, T., Liebert, T., Heublein, B., & Hornig, S. (2006). Functional Polymers based on dextran. In D. Klemm (Ed.), Polysaccharides II. (pp. 199–291). Berlin/Heidelberg: Springer Berlin Heidelberg.  https://doi.org/10.1007/12_100.CrossRefGoogle Scholar
  50. Hemvichian, K., Chanthawong, A., & Suwanmala, P. (2014). Synthesis and characterization of superabsorbent polymer prepared by radiation-induced graft copolymerization of acrylamide onto carboxymethyl cellulose for controlled release of agrochemicals. Radiation Physics and Chemistry, 103, 167–171.  https://doi.org/10.1016/j.radphyschem.2014.05.064.CrossRefGoogle Scholar
  51. Hennink, W. E., & van Nostrum, C. F. (2002). Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 54(supplement), 13–36.  https://doi.org/10.1016/j.addr.2012.09.009.CrossRefPubMedGoogle Scholar
  52. Herniou--Julien, C., Mendieta, J. R., & Gutiérrez, T. J. (2019). Characterization of biodegradable/non-compostable films made from cellulose acetate/corn starch blends processed under reactive extrusion conditions. Food Hydrocolloids, 89, 67–79.  https://doi.org/10.1016/j.foodhyd.2018.10.024.CrossRefGoogle Scholar
  53. Holback, H., Yeo, Y., & Park, K. (2011). Hydrogel swelling behavior and its biomedical applications. In S. Rimmer (Ed.), Biomedical hydrogels: Biochemistry, Manufacture and medical applications. Woodhead Publishing Limited.  https://doi.org/10.1016/b978-1-84569-590-3.50001-1.
  54. Joshi, S. J., & Abed, R. M. M. (2017). Biodegradation of polyacrylamide and its derivatives. Environmental Processes, 4(2), 463–476.  https://doi.org/10.1007/s40710-017-0224-0.CrossRefGoogle Scholar
  55. Kalhapure, A., Kumar, R., Singh, V. P., & Pandey, D. S. (2016). Hydrogels: A boon for increasing agricultural productivity in water-stressed environment. Current Science, 111(11), 1773–1779.  https://doi.org/10.18520/cs/v111/i11/1773-1779.CrossRefGoogle Scholar
  56. Katti, D. S., Lakshmi, S., Langer, R., & Laurencin, C. T. (2002). Toxicity, biodegradation and elimination of polyanhydrides. Advanced Drug Delivery Reviews, 54(7), 933–961.  https://doi.org/10.1016/S0169-409x(02)00052-2.CrossRefPubMedGoogle Scholar
  57. Kenawy, E. R., Chemistry, A., & Akelah, A. (1992). Município de Odivelas, 28(8), 2009.  https://doi.org/10.1016/0014-3057(92)90310-x.CrossRefGoogle Scholar
  58. Kuijpers, A. J., van Wachem, P. B., van Luyn, M. J., Engbers, G. H., Krijgsveld, J., Zaat, S. A., Dankert, J., & Feijen, J. (2000). In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: A model system for the delivery of antibacterial proteins from prosthetic heart valves. Journal of Controlled Release : Official Journal of the Controlled Release Society, 67(2–3), 323–336.  https://doi.org/10.1016/s0168-3659(00)00221-2.CrossRefGoogle Scholar
  59. Kumar, S., Bhanjana, G., Sharma, A., Sidhu, M. C., & Dilbaghi, N. (2014). Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydrate Polymers, 101, 1061–1067.  https://doi.org/10.1016/j.carbpol.2013.10.025.CrossRefPubMedGoogle Scholar
  60. Li, J., Yao, J., Li, Y., & Shao, Y. (2012). Controlled release and retarded leaching of pesticides by encapsulating in carboxymethyl chitosan/bentonite composite gel. Journal of Environmental Science and Health, Part B, 47(8), 795–803.  https://doi.org/10.1080/03601234.2012.676421.CrossRefGoogle Scholar
  61. Li, S. (1999). Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. Journal of Biomedical Materials Research, 48(3), 342–353.  https://doi.org/10.1002/(sici)1097-4636(1999)48:3<342::aid-jbm20>3.0.co;2-7.CrossRefPubMedGoogle Scholar
  62. Mahdavinia, G. R., Mousavi, S. B., Karimi, F., Marandi, G. B., Shahabivand, S., & Harati, M. (2009). Release behavior of 2,4-dichlorophenoxyacetic acid herbicide using novel porous polyacrylamide hydrogels. E-Polymers, 9(11), 1–13.  https://doi.org/10.1515/epoly.2009.9.1.1718.CrossRefGoogle Scholar
  63. Mansur, H. S., Oréfice, R. L., & Mansur, A. A. P. (2004). Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer, 45(21), 7193–7202.  https://doi.org/10.1016/j.polymer.2004.08.036.CrossRefGoogle Scholar
  64. Mansur, H. S., Sadahira, C. M., Souza, A. N., & Mansur, A. A. P. (2008). FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering: C, 28(4), 539–548.  https://doi.org/10.1016/j.msec.2007.10.088.CrossRefGoogle Scholar
  65. Maruyama, C. R., Guilger, M., Pascoli, M., Bileshy-José, N., Abhilash, P. C., Fraceto, L. F., & de Lima, R. (2016). Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Scientific Reports, 6, 19768.  https://doi.org/10.1038/srep19768.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Mekonnen, T., Mussone, P., Khalil, H., & Bressler, D. (2013). Progress in bio-based plastics and plasticizing modifications. Journal of Materials Chemistry A, 1(43), 13379–13398.  https://doi.org/10.1039/c3ta12555f.CrossRefGoogle Scholar
  67. Milani, P., Franca, D., Balieiro, A. G., & Faez, R. (2017). Polymers and its applications in agriculture. Polímeros, 27(3), 256–266.  https://doi.org/10.1590/0104-1428.09316.CrossRefGoogle Scholar
  68. Moreira Teixeira, L. S., Feijen, J., van Blitterswijk, C. A., Dijkstra, P. J., & Karperien, M. (2012). Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials, 33(5), 1281–1290.  https://doi.org/10.1016/j.biomaterials.2011.10.067.CrossRefGoogle Scholar
  69. Nayak, P. L. (1999). Biodegradable polymers: Opportunities and challenges. Journal of Macromolecular Science, Part C, 39(3), 481–505.  https://doi.org/10.1081/mc-100101425.CrossRefGoogle Scholar
  70. Olad, A., Zebhi, H., Salari, D., Mirmohseni, A., & Reyhani Tabar, A. (2018a). Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. Materials Science and Engineering C, 90, 333–340.  https://doi.org/10.1016/j.msec.2018.04.083.CrossRefPubMedGoogle Scholar
  71. Olad, A., Zebhi, H., Salari, D., Mirmohseni, A., & Tabar, A. R. (2018b). Water retention and slow release studies of a salep-based hydrogel nanocomposite reinforced with montmorillonite clay. New Journal of Chemistry, 42(4), 2758–2766.  https://doi.org/10.1039/c7nj03667a.CrossRefGoogle Scholar
  72. Pang, S. C., Chin, S. F., Tay, S. H., & Tchong, F. M. (2011). Starch-maleate-polyvinyl alcohol hydrogels with controllable swelling behaviors. Carbohydrate Polymers, 84(1), 424–429.  https://doi.org/10.1016/j.carbpol.2010.12.002.CrossRefGoogle Scholar
  73. Peppas, N. A., & Van Blarcom, D. S. (2016). Hydrogel-based biosensors and sensing devices for drug delivery. Journal of Controlled Release, 240, 142–150.  https://doi.org/10.1016/j.jconrel.2015.11.022.CrossRefPubMedGoogle Scholar
  74. Pereira, A. G. B., Martins, A. F., Paulino, A. T., Fajardo, A. R., Guilherme, M. R., Faria, M. G. I., Linde, G. A., Rubira, A. F., & Muniz E. C. (2017). Recent advances in designing hydrogels from chitin and chitin-derivatives and their impact on environment and agriculture: A review. Revista Virtual de Quimica, 9(1), 370–386.  https://doi.org/10.21577/1984-6835.20170021.CrossRefGoogle Scholar
  75. Pérez-Martínez, J. I., Morillo, E., Maqueda, C., & Ginés, J. M. (2001). Ethyl cellulose polymer microspheres for controlled release of norfluazon. Pest Management Science, 57(8), 688–694.  https://doi.org/10.1002/ps.339.CrossRefPubMedGoogle Scholar
  76. Perez, J. J., & Francois, N. J. (2016). Chitosan-starch beads prepared by ionotropic gelation as potential matrices for controlled release of fertilizers. Carbohydrate Polymers, 148, 134–142.  https://doi.org/10.1016/j.carbpol.2016.04.054.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Pethrick, R. A. (2004). Polymer physics. Michael Rubinstein and Ralph H Colby (Eds). Oxford University Press, Oxford, 2003.. ISBN 019852059X. pp 440. Polymer International, 53(9), 1394–1395.  https://doi.org/10.1002/pi.1472.CrossRefGoogle Scholar
  78. Pourjavadi, A., Harzandi, A. M., & Hosseinzadeh, H. (2004). Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. European Polymer Journal, 40(7), 1363–1370.  https://doi.org/10.1016/j.eurpolymj.2004.02.016.CrossRefGoogle Scholar
  79. Puoci, F., Iemma, F., Spizzirri, U. G., Cirillo, G., Curcio, M., & Picci, N. (2008). Polymer in agriculture : A review. Review Literature And Arts Of The Americas, 3(1), 299–314.Google Scholar
  80. Ramos Campos, E. V., de Oliveira, J. L., Fraceto, L. F., & Singh, B. (2014). Polysaccharides as safer release systems for agrochemicals. Agronomy for Sustainable Development, 35(1), 47–66.  https://doi.org/10.1007/s13593-014-0263-0.CrossRefGoogle Scholar
  81. Ramos Campos, E. V., De Oliveira, J. L., Fernandes Fraceto, L., & Singh, B. (2015). Polysaccharides as safer release systems for agrochemicals (Vol. 35, pp. 47–66).  https://doi.org/10.1007/s13593-014-0263-0.CrossRefGoogle Scholar
  82. Rashidzadeh, A., & Olad, A. (2014). Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohydrate Polymers, 114, 269–278.  https://doi.org/10.1016/j.carbpol.2014.08.010.CrossRefGoogle Scholar
  83. Rashidzadeh, A., Olad, A., Salari, D., & Reyhanitabar, A. (2014). On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-poly (acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertilizer. Journal of Polymer Research, 21, 344.  https://doi.org/10.1007/s10965-013-0344-9.CrossRefGoogle Scholar
  84. Ray, D., Gils, P. S., Mohanta, G. P., Manavalan, R., & Sahoo, P. K. (2010). Comparative delivery of diltiazem hydrochloride through synthesized polymer: Hydrogel and hydrogel microspheres. Journal of Applied Polymer Science, 116(2), 959–968.  https://doi.org/10.1002/app.31661.CrossRefGoogle Scholar
  85. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603–632.  https://doi.org/10.1016/j.progpolymsci.2006.06.001.CrossRefGoogle Scholar
  86. Rohindra, D. R., Nand, A. V., & Khurma, J. R. (2004). Advances in Computation and Intelligence: 4th International Symposium on... Cai, Z., Li, Z., Kang, Z., Liu, Y. (Eds.). Springer.Google Scholar
  87. Rudzinski, W. E., Dave, A. M., Vaishnav, U. H., Kumbar, S. G., Kulkarni, A. R., & Aminabhavi, T. M. (2002). Hydrogels as controlled release devices in agriculture, 5(1), 39–65.  https://doi.org/10.1163/156855502760151580.CrossRefGoogle Scholar
  88. Sakai, S., & Kawakami, K. (2007). Synthesis and characterization of both ionically and enzymatically cross-linkable alginate. Acta Biomaterialia, 3(4), 495–501.  https://doi.org/10.1016/j.actbio.2006.12.002.CrossRefPubMedGoogle Scholar
  89. Senna, A. M., & Botaro, V. R. (2017). Biodegradable hydrogel derived from cellulose acetate and EDTA as a reduction substrate of leaching NPK compound fertilizer and water retention in soil. Journal of Controlled Release, 260, 194–201.  https://doi.org/10.1016/j.jconrel.2017.06.009.CrossRefPubMedGoogle Scholar
  90. Senna, A. M., Braga Do Carmo, J., Santana Da Silva, J. M., & Botaro, V. R. (2015). Synthesis, characterization and application of hydrogel derived from cellulose acetate as a substrate for slow-release NPK fertilizer and water retention in soil. Journal of Environmental Chemical Engineering, 3(2), 996–1002.  https://doi.org/10.1016/j.jece.2015.03.008.CrossRefGoogle Scholar
  91. Shantha, K. L., & Harding, D. R. K. (2002). Synthesis and evaluation of sucrose-containing polymeric hydrogels for oral drug delivery. Journal of Applied Polymer Science, 84(14), 2597–2604.  https://doi.org/10.1002/app.10378.CrossRefGoogle Scholar
  92. Sharma, R., Bajpai, J., Bajpai, A. K., Acharya, S., Shrivastava, R. B., & Shukla, S. K. (2014). Designing slow water-releasing alginate nanoreserviors for sustained irrigation in scanty rainfall areas. Carbohydrate Polymers, 102, 513–520.  https://doi.org/10.1016/j.carbpol.2013.11.059.CrossRefPubMedGoogle Scholar
  93. dos Silva, M. S., Cocenza, D. S., Grillo, R., Silva de Melo, N. F., Tonello, P. S., de Oliveira, C., Lopes Cassimiro, C., Henrique, D., Rosa, A., & Fraceto, L. F. (2011). Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies. Journal of Hazardous Materials, 190(1–3), 366–374.  https://doi.org/10.1016/j.jhazmat.2011.03.057.CrossRefGoogle Scholar
  94. Singh, B., Sharma, D. K., Negi, S., & Dhiman, A. (2015). Synthesis and characterization of agar-starch based hydrogels for slow herbicide delivery applications. International Journal of Plastics Technology, 19(2), 263–274.  https://doi.org/10.1007/s12588-015-9126-z.CrossRefGoogle Scholar
  95. Sopeña-Vázquez, F., Morillo, E., Villaverde, J., & Maqueda, C. (2008). Reduction of pesticide pollution in agricutural soils by using controlled release formulations: Efficacy and persistence studies. Fresenius Environmental Bulletin, 17(10 B), 1705–1710.Google Scholar
  96. Sopeña, F., Cabrera, A., Maqueda, C., & Morillo, E. (2007). Ethylcellulose formulations for controlled release of the herbicide alachlor in a sandy soil. Journal of Agricultural and Food Chemistry, 55(20), 8200–8205.  https://doi.org/10.1021/jf071459g.CrossRefPubMedGoogle Scholar
  97. Sopeña, F., Maqueda, C., & Morillo, E. (2009a). Controlled release formulations of herbicides based on micro-encapsulation. Ciencia e Investigación Agraria. scielocl.Google Scholar
  98. Sopeña, F., Maqueda, C., & Morillo, E. (2009b). Formulation affecting alachlor efficacy and persistence in sandy soils. Pest Management Science, 65(7), 761–768.  https://doi.org/10.1002/ps.1750.CrossRefPubMedGoogle Scholar
  99. Sopeña, F., Villaverde, J., Maqueda, C., & Morillo, E. (2011). Photostabilization of the herbicide norflurazon microencapsulated with ethylcellulose in the soil-water system. Journal of Hazardous Materials, 195, 298–305.  https://doi.org/10.1016/j.jhazmat.2011.08.039.CrossRefPubMedGoogle Scholar
  100. Soppimath, K. S., Aminabhavi, T. M., Dave, A. M., Kumbar, S. G., & Rudzinski, W. E. (2002). Stimulus-responsive “smart” hydrogels as novel drug delivery systems. Drug Development and Industrial Pharmacy, 28(8), 957–974.  https://doi.org/10.1081/ddc-120006428.CrossRefPubMedGoogle Scholar
  101. Tabata, Y. (2009). Biomaterial technology for tissue engineering applications. Journal of the Royal Society, Interface, 6(Suppl 3), S311–S324.  https://doi.org/10.1098/rsif.2008.0448.focus.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Tanan, W., Panichpakdee, J., & Saengsuwan, S. (2018). Novel biodegradable hydrogel based on natural polymers : Synthesis, characterization, swelling / reswelling and biodegradability. European Polymer Journal, 112, 678–687.  https://doi.org/10.1016/j.eurpolymj.2018.10.033.CrossRefGoogle Scholar
  103. Teodorescu, M., Lungu, A., Stanescu, P. O., & Neamt, C. (2009). Preparation and properties of novel slow-release NPK agrochemical formulations based on poly (acrylic acid) hydrogels and liquid fertilizers. Industrial & Engineering Chemistry Research, 48(14), 6527–6534.  https://doi.org/10.1021/ie900254b.CrossRefGoogle Scholar
  104. Terao, K., Nagasawa, N., Nishida, H., Furusawa, K., Mori, Y., Yoshii, F., & Dobashi, T. (2003). Reagent-free crosslinking of aqueous gelatin: Manufacture and characteristics of gelatin gels irradiated with gamma-ray and electron beam. Journal of Biomaterials Science.. Polymer Edition, 14(11), 1197–1208.CrossRefGoogle Scholar
  105. Thombare, N., Mishra, S., Siddiqui, M. Z., Jha, U., Singh, D., & Mahajan, G. R. (2018). Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications. Carbohydrate Polymers., 185, 169–178.  https://doi.org/10.1016/j.carbpol.2018.01.018.CrossRefPubMedGoogle Scholar
  106. Vasilakoglou, I. B., & Eleftherohorinos, I. G. (2003). Persistence, efficacy, and selectivity of amide herbicides in corn. Weed Technology, 17(2), 381–388.  https://doi.org/10.2307/3989325.CrossRefGoogle Scholar
  107. Vundavalli, R., Vundavalli, S., Nakka, M., & Rao, D. S. (2015). Biodegradable nano-hydrogels in agricultural farming - alternative source for water resources. Procedia Materials Science, 10, 548–554.  https://doi.org/10.1016/j.mspro.2015.06.005.CrossRefGoogle Scholar
  108. Wang, T., Turhan, M., & Gunasekaran, S. (2004). Selected properties of pH-sensitive, biodegradable chitosan–poly(vinyl alcohol) hydrogel. Polymer International, 53(7), 911–918.  https://doi.org/10.1002/pi.1461.CrossRefGoogle Scholar
  109. Wang, W., & Wang, A. (2010). Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydrate Polymers, 80(4), 1028–1036.  https://doi.org/10.1016/j.carbpol.2010.01.020.CrossRefGoogle Scholar
  110. Wang, X.-L., Yang, K.-K., & Wang, Y.-Z. (2003). Properties of starch blends with biodegradable polymers. Journal of Macromolecular Science, Part C, 43(3), 385–409.  https://doi.org/10.1081/mc-120023911.CrossRefGoogle Scholar
  111. Wu, Y., Zheng, Y., Yang, W., Wang, C., Hu, J., & Fu, S. (2005). Synthesis and characterization of a novel amphiphilic chitosan–polylactide graft copolymer. Carbohydrate Polymers, 59(2), 165–171.  https://doi.org/10.1016/j.carbpol.2004.09.006.CrossRefGoogle Scholar
  112. Yegappan, R., Selvaprithiviraj, V., Amirthalingam, S., & Jayakumar, R. (2018). Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydrate Polymers, 198, 385–400.  https://doi.org/10.1016/j.carbpol.2018.06.086.CrossRefPubMedGoogle Scholar
  113. Zhu, Z., & Zhuo, R. (2000). Crosslinked quaternary ammonium cornstarch matrix for slow release of carboxylic groups-containing herbicides. Starch - Stärke, 52(2–3), 58–63.  https://doi.org/10.1002/(sici)1521-379x(200004)52:2/3<58::aid-star58>3.0.co;2-3.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bárbara Tomadoni
    • 1
    Email author
  • Claudia Casalongué
    • 2
  • Vera A. Alvarez
    • 1
  1. 1.Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de IngenieríaUniversidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Mar del PlataArgentina
  2. 2.Instituto de Investigaciones Biológicas. UE CONICET-UNMDP, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del PlataMar del PlataArgentina

Personalised recommendations