Soil Water as a Nutrient Solution

  • Klaus Reichardt
  • Luís Carlos Timm


The soil solution is first presented at equilibrium, introducing the concepts of Gibbs free energy, ion activity, activity coefficients, activity of ionic solutions and ionic strength. The Donnan theory for colloids in suspension and the double ionic layer of clay minerals in soils are very well described, to introduce the concepts of cation exchange capacity and anion exchange capacity. The dynamics of nutrients is presented by diffusion (Fick’s law) and mass flow as a result of plant transpiration. Differential equations are developed using the continuity equation applied for ionic species, to describe ion space and time distributions in the soil. As examples some practical problems are discussed and solved. At the end an introduction to miscible displacement of ions in soils is presented.


  1. Babcock KL (1963) Theory of chemical properties of soil colloidal systems at equilibrium. Hilgardia 34:417–542CrossRefGoogle Scholar
  2. Baham J (1984) Prediction of ion activities in soil solutions: computer equilibrium modeling. Soil Sci Soc Am J 48:525–531CrossRefGoogle Scholar
  3. Bolt GH (1955) Analysis of the validity of the Gouy Chapman’s theory of the electric double-layer. J Coll Sci 10:206–218CrossRefGoogle Scholar
  4. Crank J (1956) The mathematics of diffusion. Oxford University Press, LondonGoogle Scholar
  5. Donnan FG (1911) Theorie der membrangleichgewichte und membranpotentiale bei vorhandsein von micht dialysierenden eletrolyten. Z Electrochem 17:572–581Google Scholar
  6. Donnan FG, Guggenheim A (1932) Die genaue thermodynamik der membrangleichgewichte. Z Phys Chem 162(A):346–360Google Scholar
  7. Fried M, Broeshard H (1967) The soil-plant system in relation to inorganic nutrition. Academic, New York, NYGoogle Scholar
  8. Gouy C (1910) Sur la constituition de la charge electrique a la surface d’un electrolyte. J Phys 9:457–468Google Scholar
  9. Harned HS, Owens BB (1958) The physical-chemistry of electrolytic solutions, 3rd edn. Reinhold Publication Corporation, New York, NYGoogle Scholar
  10. Havlin JL, Tisdale SL, Nelson WL, Beaton JD (2014) Soil fertility and fertilizers, 8th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  11. Jackson ML, Lim CH, Zelazny LW (1986) Oxides, hydroxides, and aluminosilicates. In: Klute A (ed) Methods of soil analysis. American Society of Agronomy; Soil Science Society of America, Madison, WI, pp 101–150Google Scholar
  12. Jacobs MH (1967) Diffusion processes. Springer-Verlag, BerlinCrossRefGoogle Scholar
  13. Koorevaar P, Menelik G, Dirksen C (1983) Elements of soil physics. Elsevier, AmsterdamGoogle Scholar
  14. Lewis GN, Randall M (1923) Thermodynamics and free energy of chemical substances. McGraw-Hill, New York, NYGoogle Scholar
  15. Macher MC (1984) Determination of ionic activities in soil solutions and suspensions: principal limitations. Soil Sci Soc Am J 48:519–524CrossRefGoogle Scholar
  16. Malavolta E (1979) ABC da adubação. Agronômica Ceres, São PauloGoogle Scholar
  17. Misra C, Misra BK (1977) Miscible displacement of nitrate and chloride under field conditions. Soil Sci Soc Am J 41:496–499CrossRefGoogle Scholar
  18. Misra C, Nielsen DR, Biggar JW (1974) Nitrogen transformations in soil during leaching. I. Theoretical considerations. Soil Sci Soc Am Proc 38:289–292CrossRefGoogle Scholar
  19. Nascimento Filho VF, Reichardt K, Libardi PL (1979) Deslocamento miscível do íon cloreto em solo Terra Roxa Estruturada (Alfisol) saturado em condições de campo. Rev Bras Cienc Solo 3:67–73Google Scholar
  20. Reichardt K (1977) Extração e análise da solução do solo. Sociedade Brasileira de Ciência do Solo, CampinasGoogle Scholar
  21. Reichardt K, Godoy CM (1972) Solução numérica de equações diferenciais parciais. Centro de Energia Nuclear na Agricultura. Universidade de São Paulo, PiracicabaGoogle Scholar
  22. Reichardt K, Libardi PL, Meirelles NMF, Ferreyra FF, Zagatto EAG, Matsui E (1977) Extração e análise de nitratos em solução do solo. Rev Bras Cienc Solo 1:130–132Google Scholar
  23. Reichardt K, Nielsen DR, Biggar JW (1972) Scaling of horizontal infiltration into homogeneous soils. Soil Sci Soc Am Proc 36:241–245CrossRefGoogle Scholar
  24. Shukla MK, Kastanek FJ, Nielsen DR (2002) Inspectional analysis of convective-dispersion equation and application on measured breakthrough curves. Soil Sci Soc Am J 66:1087–1094CrossRefGoogle Scholar
  25. Sparks DL (1984) Ion activities: an historical and theoretical overview. Soil Sci Soc Am J 48:514–518CrossRefGoogle Scholar
  26. Sposito G (1989) The chemistry of soils. Oxford University Press, New York, NYGoogle Scholar
  27. Sposito G (1984) The future of an illusion: ion activities in soil solutions. Soil Sci Soc Am J 48:531–536CrossRefGoogle Scholar
  28. Tillotson PM, Nielsen DR (1984) Scale factors in soil science. Soil Sci Soc Am J 48:953–959CrossRefGoogle Scholar
  29. Van Raij B (1991) Fertilidade do solo e adubação. Agronômica Ceres, São PauloGoogle Scholar
  30. Van Raij B (1987) Avaliação da fertilidade do solo, 3rd edn. Associação Brasileira de Pesquisa da Potassa e do Fosfato, PiracicabaGoogle Scholar
  31. Van Raij B, Peech M (1972) Electrochemical properties of some Oxisols and Alfsoils of the tropics. Soil Sci Soc Am Proc 36:587–593CrossRefGoogle Scholar
  32. Wagenet RJ, Starr JL (1977) A method for the simultaneous control of the water regime and gaseous atmosphere in soil columns. Soil Sci Soc Am J 41:658–659CrossRefGoogle Scholar
  33. Wagenet RJ, Biggar JW, Nielsen DR (1977) Tracing the transformations of urea fertilizer during leaching. Soil Sci Soc Am J 41:896–902CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Klaus Reichardt
    • 1
  • Luís Carlos Timm
    • 2
  1. 1.Centro de Energia Nuclear na Agricultura and Escola Superior de Agricultura “Luiz de Queiróz”University of Sao PauloPiracicabaBrazil
  2. 2.Rural Engineering Department, Faculty of AgronomyFederal University of PelotasCapão do LeãoBrazil

Personalised recommendations