Advertisement

Bioinformatics and Medicinal Plant Research: Current Scenario

  • Insha ZahoorEmail author
  • Amrina Shafi
  • Khalid Majid Fazili
  • Ehtishamul Haq
Chapter

Abstract

Bioinformatics being a multidisciplinary data-driven field has revolutionized several aspects of life sciences research, and area of drug development through medicinal plants is no exception. Medicinal plants have been known to play a major role in the primary healthcare system of several communities across the globe since ancient times. They continue to provide a multitude of pharmacologically active compounds. Now, to increase the utility of medicinal plants for drug discovery, bioinformatics plays a major role in replacing the conventional expensive, time-consuming and sluggish methods of drug development through high-throughput computational approaches. In this chapter, we attempt to present the comprehensive and updated summary on the role of bioinformatics in the area of medicinal plant research through the development of plant-based drugs. We need to understand the role of different bioinformatics approaches in medicinal plant research as it could serve as harbinger for the discovery of new therapeutic potential leads against various pharmacological targets. Owing to the increasing demand of herbal drugs in the market due to a wide continuum of beneficial effects they can offer to humankind over their non-plant counterparts, it becomes mandatory to pay attention to the medicinal plant-based research area in which there has been limited application of bioinformatics approaches. The chapter therefore aims to provide an overview on the current scenario of bioinformatics in analysing the data pertaining to medicinal plants, which ultimately could lead to quicker and economical drug designing with improved pharmacokinetics.

Keywords

Applications Bioinformatics Drug development Medicinal plants Virtual screening 

Notes

Acknowledgements

We are highly indebted to the Bioinformatics Centre, University of Kashmir, for providing their services while drafting this chapter.

Conflict of Interest

The authors declare that they have no conflicts of interest with respect to research, authorship and publication of this book chapter.

Copyright and Permission Statement

We confirm that the materials included in this chapter do not violate copyright laws. Where relevant, appropriate permissions have been obtained from the original copyright holder(s). All original sources have been appropriately acknowledged and/or referenced.

References

  1. Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, Saito K, Kanaya S (2012) KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol 53(2):e1CrossRefPubMedGoogle Scholar
  2. Agyare C, Obiri DD, Boakye YD, Osafo N (2013) Anti-inflammatory and analgesic activities of African medicinal plants. In: Kuete V (ed) Medicinal plant research in Africa. Elsevier, London, pp 725–752CrossRefGoogle Scholar
  3. Babar MM, Najam-us-Sahar ZS, Pothineni RV, Ali Z, Faisal S, Hakeem RK, Gul A (2017) Application of bioinformatics and system biology in medicinal plant studies. In: Hakeem KR et al (eds) Plant bioinformatics. Springer International Publishing, Cham, pp 375–393CrossRefGoogle Scholar
  4. Barrett T, Edgar R (2006) Gene expression omnibus: microarray data storage, submission, retrieval, and analysis. Methods Enzymol 411:352–369CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bensimon A, Heck AJ, Aebersold R (2012) Mass spectrometry-based proteomics and network biology. Annu Rev Biochem 81:379–405CrossRefPubMedGoogle Scholar
  6. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41(D1):D36–D42CrossRefGoogle Scholar
  7. Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E (2015) The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis 53(8):474–485CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1978) The protein data bank: a computer-based archival file for macromolecular structures. Arch Biochem Biophys 185(2):584–591CrossRefPubMedGoogle Scholar
  9. Boeckmann B, Bairoch A, Apweiler R, Blatter M-C, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31(1):365–370CrossRefPubMedPubMedCentralGoogle Scholar
  10. Boudon F, Chopard J, Ali O, Gilles B, Hamant O, Boudaoud A, Traas J, Godin C (2015) A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution. PLoS Comput Biol 11(1):e1003950CrossRefPubMedPubMedCentralGoogle Scholar
  11. Buenz EJ, Johnson HE, Beekman EM, Motley TJ, Bauer BA (2005) Bioprospecting Rumphius’s Ambonese herbal: volume I. J Ethnopharmacol 96(1–2):57–70CrossRefPubMedGoogle Scholar
  12. Caccia D, Dugo M, Callari M, Bongarzone I (2013) Bioinformatics tools for secretome analysis. Biochim Biophys Acta (BBA) Protein Proteomics 1834(11):2442–2453CrossRefGoogle Scholar
  13. Caetano-Anollés G, Gresshoff P (2013) Phylogenetic analysis of plants. Mol Ecol Evol Approaches Appl 69:17CrossRefGoogle Scholar
  14. Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, Paley S, Rhee SY, Shearer AG, Tissier C (2008) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 36(suppl 1):D623–D631PubMedPubMedCentralGoogle Scholar
  15. Chakraborty P (2018) Herbal genomics as tools for dissecting new metabolic pathways of unexplored medicinal plants and drug discovery. Biochim Open 6:9–16CrossRefPubMedPubMedCentralGoogle Scholar
  16. Champagne A, Boutry M (2013) Proteomics of nonmodel plant species. Proteomics 13(3–4):663–673CrossRefPubMedGoogle Scholar
  17. Chanda S (2014) Importance of pharmacognostic study of medicinal plants: an overview. J Pharmacogn Phytochem 2(5):69–73Google Scholar
  18. Chen CY (2011) TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One 6(1):e15939CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen H, Mao Y, Zheng X, Cui M, Feng Y, Deng S, Yin A, Zhou C, Tang J, Jiang X, Wu Z (2007) Towards semantic e-science for traditional Chinese medicine. BMC Bioinforma 8(Suppl 3):S6CrossRefGoogle Scholar
  20. Childs KL (2014) Methods for plant genome annotation. In: Bell E (ed) Molecular life sciences: an encyclopedia reference. Springer, New York, pp 1–7Google Scholar
  21. Clarkson C, Maharaj VJ, Crouch NR, Grace OM, Pillay P, Matsabisa MG, Bhagwandin N, Smith PJ, Folb PI (2004) In vitro antiplasmodial activity of medicinal plants native to or naturalized in South Africa. J Ethnopharmacol 92(2–3):177–191CrossRefPubMedGoogle Scholar
  22. Consortium GO (2013) Gene ontology annotations and resources. Nucleic Acids Res 41(D1):D530–D535CrossRefGoogle Scholar
  23. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582CrossRefPubMedPubMedCentralGoogle Scholar
  24. da Maia LC, Palmieri DA, de Souza VQ, Kopp MM, de Carvalho FI, Costa de Oliveira A (2008) SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Genomics 2008:412696PubMedPubMedCentralGoogle Scholar
  25. Dash S, Van Hemert J, Hong L, Wise RP, Dickerson JA (2012) PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Res 40(D1):D1194–D1201CrossRefPubMedGoogle Scholar
  26. Davies TJ, Wolkovich EM, Kraft NJ, Salamin N, Allen JM, Ault TR, Betancourt JL, Bolmgren K, Cleland EE, Cook BI (2013) Phylogenetic conservatism in plant phenology. J Ecol 101(6):1520–1530CrossRefGoogle Scholar
  27. Dhondt S, Wuyts N, Inzé D (2013) Cell to whole-plant phenotyping: the best is yet to come. Trends Plant Sci 18(8):428–439CrossRefPubMedGoogle Scholar
  28. DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22(2):151–185CrossRefPubMedGoogle Scholar
  29. Donaldson I, Martin J, De Bruijn B, Wolting C, Lay V, Tuekam B, Zhang S, Baskin B, Bader GD, Michalickova K (2003) PreBIND and textomy–mining the biomedical literature for protein-protein interactions using a support vector machine. BMC Bioinforma 4(1):1CrossRefGoogle Scholar
  30. Drezen E, Lavenier D (2014) Quality metrics for benchmarking sequences comparison tools. In: Brazilian symposium on bioinformatics. Springer International Publishing, Cham, pp 144–153Google Scholar
  31. Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, Huber W (2005) BioMart and bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21(16):3439–3440CrossRefGoogle Scholar
  32. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210CrossRefPubMedPubMedCentralGoogle Scholar
  33. Engelhorn J, Turck F (2017) Meta-analysis of genome-wide chromatin data. Methods Mol Biol 1456:33CrossRefPubMedGoogle Scholar
  34. Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109(Suppl 1):69–75CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gaikwad J, Khanna V, Vemulpad S, Jamie J, Kohen J, Ranganathan S (2008) CMKb: a web-based prototype for integrating Australian aboriginal customary medicinal plant knowledge. BMC Bioinforma 9(Suppl 12):S25CrossRefGoogle Scholar
  36. Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Suppl 1):D140–D144CrossRefGoogle Scholar
  37. Gu P, Chen H (2013) Modern bioinformatics meets traditional Chinese medicine. Brief Bioinform 15(6):984–1003CrossRefPubMedGoogle Scholar
  38. Gu J, Gui Y, Chen L, Yuan G, Xu X (2013) CVDHD: a cardiovascular disease herbal database for drug discovery and network pharmacology. J Cheminform 5(1):51CrossRefPubMedPubMedCentralGoogle Scholar
  39. Harishchander A (2017) A review on application of bioinformatics in medicinal plant research. Bioinforma Proteomics Open Access J 1(1):000104Google Scholar
  40. Hegde P, Qi R, Abernathy K, Gay C, Dharap S, Gaspard R, Hughes J, Snesrud E, Lee N, Quackenbush J (2000) A concise guide to cDNA microarray analysis. BioTechniques 29(3):548–563CrossRefPubMedGoogle Scholar
  41. Hu R, Ren G, Sun G, Sun X (2016) TarNet: an evidence-based database for natural medicine research. PLoS One 11(6):e0157222CrossRefPubMedPubMedCentralGoogle Scholar
  42. Incarbone M, Dunoyer P (2013) RNA silencing and its suppression: novel insights from in planta analyses. Trends Plant Sci 18(7):382–392CrossRefPubMedGoogle Scholar
  43. Irizarry RA, Cope LM, Wu Z (2006) Feature-level exploration of a published Affymetrix GeneChip control dataset. Genome Biol 7(8):1CrossRefGoogle Scholar
  44. Jensen K, Panagiotou G, Kouskoumvekaki I (2014) Correction: integrated text mining and chemoinformatics analysis associates diet to health benefit at molecular level. PLoS Comput Biol 10(1):10CrossRefPubMedCentralGoogle Scholar
  45. Jensen K, Panagiotou G, Kouskoumvekaki I (2015) NutriChem: a systems chemical biology resource to explore the medicinal value of plant-based foods. Nucleic Acids Res 43(D1):D940–D945CrossRefPubMedGoogle Scholar
  46. Ji ZL, Zhou H, Wang JF, Han LY, Zheng CJ, Chen YZ (2006) Traditional Chinese medicine information database. J Ethnopharmacol 103(3):501CrossRefPubMedGoogle Scholar
  47. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303(5665):1813–1818CrossRefPubMedGoogle Scholar
  48. Kanehisa M (2009) Representation and analysis of molecular networks involving diseases and drugs. Genome Inform 23(1):212–213PubMedPubMedCentralGoogle Scholar
  49. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38(D1):D355–D360CrossRefPubMedGoogle Scholar
  51. Karunamoorthi K, Jegajeevanram K, Vijayalakshmi J, Mengistie E (2013) Traditional medicinal plants a source of phytotherapeutic modality in resource-constrained health care settings. J Evid Based Complement Alternat Med 18(1):67–74CrossRefGoogle Scholar
  52. Katara P (2013) Role of bioinformatics and pharmacogenomics in drug discovery and development process. Netw Model Anal Health Inform Bioinforma 2(4):225–230CrossRefGoogle Scholar
  53. Kempinski C, Jiang Z, Bell S, Chappell J (2015) Metabolic engineering of higher plants and algae for isoprenoid production. In: Biotechnology of isoprenoids. Springer International Publishing, Cham, pp 161–199CrossRefGoogle Scholar
  54. Lagunin AA, Goel RK, Gawande DY, Pahwa P, Gloriozova TA, Dmitriev AV, Ivanov SM, Rudik AV, Konova VI, Pogodin PV, Druzhilovsky DS, Poroikov VV (2014) Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review. Nat Prod Rep 31(11):1585–1611CrossRefPubMedGoogle Scholar
  55. Leonti M (2013) Traditional medicines and globalization: current and future perspectives in ethnopharmacology. Front Pharmacol 4:92CrossRefPubMedPubMedCentralGoogle Scholar
  56. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103(2–3):455–461CrossRefGoogle Scholar
  57. Li H, Ung CY, Yap CW, Xue Y, Li ZR, Cao ZW, Chen YZ (2005) Prediction of genotoxicity of chemical compounds by statistical learning methods. Chem Res Toxicol 18:1071–1080CrossRefPubMedGoogle Scholar
  58. Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S (2015) Plant DNA barcoding: from gene to genome. Biol Rev 90(1):157–166CrossRefPubMedGoogle Scholar
  59. Liu X, Zhu F, Ma X, Tao L, Zhang J, Yang S, Wei Y, Chen YZ (2011) The therapeutic target database: an internet resource for the primary targets of approved, clinical trial and experimental drugs. Expert Opin Ther Targets 15(8):903–912CrossRefPubMedGoogle Scholar
  60. London N, Raveh B, Schueler-Furman O (2013) Druggable protein–protein interactions–from hot spots to hot segments. Curr Opin Chem Biol 17(6):952–959CrossRefPubMedGoogle Scholar
  61. Loub WD, Farnsworth NR, Soejarto DD, Quinn ML (1985) NAPRALERT: computer handling of natural product research data. J Chem Inf Comput Sci 25(2):99–103CrossRefPubMedGoogle Scholar
  62. Magrane M, Consortium U (2011) UniProt knowledgebase: a hub of integrated protein data. Database J Biol Databases Curation 2011:bar009Google Scholar
  63. Mangal M, Sagar P, Singh H, Raghava GP, Agarwal SM (2013) NPACT: naturally occurring plant-based anti-cancer compound-activity-target database. Nucleic Acids Res 41(D1):D1124–D1129CrossRefPubMedGoogle Scholar
  64. Masoudi-Nejad A, Goto S, Jauregui R, Ito M, Kawashima S, Moriya Y, Endo TR, Kanehisa M (2007) EGENES: transcriptome-based plant database of genes with metabolic pathway information and expressed sequence tag indices in KEGG. Plant Physiol 144(2):857–866CrossRefPubMedPubMedCentralGoogle Scholar
  65. Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I (2000) VISTA: Visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16(11):1046–1047CrossRefPubMedGoogle Scholar
  66. Miller J (2011) The discovery of medicines from plants: a current biological perspective. Econ Bot 65:396–407CrossRefGoogle Scholar
  67. Mochida K, Uehara-Yamaguchi Y, Yoshida T, Sakurai T, Shinozaki K (2011) Global landscape of a co-expressed gene network in barley and its application to gene discovery in Triticeae crops. Plant Cell Physiol 52(5):785–803CrossRefPubMedPubMedCentralGoogle Scholar
  68. Mohanraj K, Karthikeyan BS, Vivek-Ananth RP, Chand RPB, Aparna SR, Mangalapandi P, Samal A (2018) IMPPAT: a curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci Rep 8(1):4329CrossRefPubMedPubMedCentralGoogle Scholar
  69. Moriya Y, Shigemizu D, Hattori M, Tokimatsu T, Kotera M, Goto S, Kanehisa M (2010) PathPred: an enzyme-catalyzed metabolic pathway prediction server. Nucleic Acids Res 38(W1):W138–W143CrossRefPubMedPubMedCentralGoogle Scholar
  70. Nantasenamat C, Isarankura-Na-Ayudhya C, Naenna T, Prachayasittikul V (2009) A practical overview of quantitative structure-activity relationship. EXCLI J 8:74–88Google Scholar
  71. Nayak SK, Patra PK, Padhi P, Panda A (2010) Optimization of herbal drugs using soft computing approach. Int J Log Comput 1:34–39Google Scholar
  72. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661CrossRefGoogle Scholar
  73. Ohyanagi H, Takano T, Terashima S, Kobayashi M, Kanno M, Morimoto K, Kanegae H, Sasaki Y, Saito M, Asano S (2014) Plant omics data center: an integrated web repository for interspecies gene expression networks with NLP-based curation. Plant Cell Physiol 56(1):e9. (1–8)CrossRefPubMedPubMedCentralGoogle Scholar
  74. Pathania S, Ramakrishnan SM, Bagler G (2015) Phytochemica: a platform to explore phytochemicals of medicinal plants. Database (Oxford) 2015Google Scholar
  75. Patwardhan B, Warude D, Pushpangadan P, Bhatt N (2005) Ayurveda and traditional Chinese medicine: a comparative overview. Evid Based Complement Alternat Med 2(4):465–473CrossRefPubMedPubMedCentralGoogle Scholar
  76. Pei J, Yin N, Ma X, Lai L (2014) Systems biology brings new dimensions for structure-based drug design. J Am Chem Soc 136(33):11556–11565CrossRefPubMedGoogle Scholar
  77. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301CrossRefPubMedGoogle Scholar
  78. Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA 114(22):5601–5606CrossRefPubMedGoogle Scholar
  79. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E (2000) Genome-wide location and function of DNA binding proteins. Science 290(5500):2306–2309CrossRefPubMedGoogle Scholar
  80. Ritala A, Häkkinen ST, Schillberg S (2014) Molecular pharming in plants and plant cell cultures: a great future ahead? Pharm Bioprocess 2(3):223–226CrossRefGoogle Scholar
  81. Rocca-Serra P, Brazma A, Parkinson H, Sarkans U, Shojatalab M, Contrino S, Vilo J, Abeygunawardena N, Mukherjee G, Holloway E, Kapushesky M, Kemmeren P, Lara GG, Oezcimen A, Sansone SA (2003) ArrayExpress: a public database of gene expression data at EBI. C R Biol 326(10–11):1075–1078CrossRefGoogle Scholar
  82. Rose PW, Bi C, Bluhm WF, Christie CH, Dimitropoulos D, Dutta S, Green RK, Goodsell DS, Prlić A, Quesada M (2013) The RCSB protein data bank: new resources for research and education. Nucleic Acids Res 41(D1):D475–D482CrossRefPubMedGoogle Scholar
  83. Rusyn I, Daston GP (2010) Computational toxicology: realizing the promise of the toxicity testing in the 21st century. Environ Health Perspect 118(8):1047–1050CrossRefPubMedPubMedCentralGoogle Scholar
  84. Saito K (2013) Phytochemical genomics—a new trend. Curr Opin Plant Biol 16(3):373–380CrossRefPubMedGoogle Scholar
  85. Samwald M, Dumontier M, Zhao J, Luciano JS, Marshall MS, Cheung K (2010) Integrating findings of traditional medicine with modern pharmaceutical research: the potential role of linked open data. Chinese Med 5:43CrossRefGoogle Scholar
  86. Sarkar IN (2000) Biodiversity informatics: the emergence of a field. BMC Bioinforma 10(Suppl 14):S1Google Scholar
  87. Saxena M, Saxena J, Nema R, Singh D, Gupta A (2013) Phytochemistry of medicinal plants. J Pharmacogn Phytochem 1(6):168–182Google Scholar
  88. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Mizrachi I, Ostell J, Panchenko A, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Slotta D, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Wang Y, John Wilbur W, Yaschenko E, Ye J (2010) Database resources of the national center for biotechnology information. Nucleic Acids Res 38(D1):D5–D16CrossRefGoogle Scholar
  89. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467CrossRefGoogle Scholar
  90. Schläpfer P, Zhang P, Wang C, Kim T, Banf M, Chae L, Dreher K, Chavali AK, Nilo-Poyanco R, Bernard T, Kahn D, Rhee SY (2017) Genome-wide prediction of metabolic enzymes, pathways, and gene clusters in plants. Plant Physiol 173(4):2041–2059CrossRefPubMedPubMedCentralGoogle Scholar
  91. Sharma V, Sarkar IN (2012) Bioinformatics opportunities for identification and study of medicinal plants. Brief Bioinform 14(2):238–250CrossRefPubMedPubMedCentralGoogle Scholar
  92. Singh A, Kumar N (2013) A review on DNA microarray technology. Int J Curr Res Rev 5(22):1Google Scholar
  93. Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27(6):747–751CrossRefGoogle Scholar
  94. Strohl WR (2000) The role of natural products in a modern drug discovery program. Drug Discov Today 5(2):39–41CrossRefPubMedGoogle Scholar
  95. Tanabe L, Scherf U, Smith LH, Lee JK, Michaels GS, Hunter L, Weinstein JN (1999) MedMiner: an internet tool for filtering and organizing biomedical information. BioTechniques 27:1210–1217CrossRefPubMedGoogle Scholar
  96. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44(14):6614–6624CrossRefPubMedPubMedCentralGoogle Scholar
  97. Ueno S, Moriguchi Y, Uchiyama K, Ujino-Ihara T, Futamura N, Sakurai T, Shinohara K, Tsumura Y (2012) A second generation framework for the analysis of microsatellites in expressed sequence tags and the development of EST-SSR markers for a conifer, Cryptomeria japonica. BMC Genomics 13(1):1CrossRefGoogle Scholar
  98. UniProt C (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 42(D1):D191–D198CrossRefGoogle Scholar
  99. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30(9):418–426CrossRefPubMedGoogle Scholar
  100. Valerio LG Jr, Arvidson KB, Busta E, Minnier BL, Kruhlak NL, Benz RD (2010) Testing computational toxicology models with phytochemicals. Mol Nutr Food Res 54(2):186–194CrossRefPubMedGoogle Scholar
  101. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55CrossRefPubMedGoogle Scholar
  102. Wagner JC, Rogers JE, Baud RH, Scherrer JR (1998) Natural language generation of surgical procedures. Stud Health Technol Inform 52(Pt 1):591–595PubMedPubMedCentralGoogle Scholar
  103. Wang JF, Zhou H, Han LY, Chen X, Chen YZ, Cao ZW (2005) Traditional Chinese medicine information database. Clin Pharmacol Ther 78(1):92–93CrossRefPubMedGoogle Scholar
  104. Wang Y, Wang X, Cheng Y (2006) A computational approach to botanical drug design by modeling quantitative composition-activity relationship. Chem Biol Drug Des 68(3):166–172CrossRefPubMedGoogle Scholar
  105. Wetie AGN, Sokolowska I, Woods AG, Roy U, Deinhardt K, Darie CC (2014) Protein–protein interactions: switch from classical methods to proteomics and bioinformatics-based approaches. Cell Mol Life Sci 71(2):205–228CrossRefGoogle Scholar
  106. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S (2007) Database resources of the national center for biotechnology information. Nucleic Acids Res 35(Suppl 1):D5–D12CrossRefPubMedGoogle Scholar
  107. Wise RP, Caldo RA, Hong L, Shen L, Cannon E, Dickerson JA (2007) BarleyBase/PLEXdb. Methods Mol Biol 406:347–363PubMedPubMedCentralGoogle Scholar
  108. Wolfender J-L, Rudaz S, Hae Choi Y, Kyong Kim H (2013) Plant metabolomics: from holistic data to relevant biomarkers. Curr Med Chem 20(8):1056–1090PubMedPubMedCentralGoogle Scholar
  109. Wootton JC (2002) “Development of HerbMed”: an interactive. Ethnomed Drug Discov 1:55CrossRefGoogle Scholar
  110. Wu KM, Farrelly J, Birnkrant D, Chen S, Dou J, Atrakchi A, Bigger A, Chen C, Chen Z, Freed L, Ghantous H, Goheer A, Hausner E, Osterberg R, Rhee H, Zhang K (2004) Regulatory toxicology perspectives on the development of botanical drug products in the United States. Am J Ther 11(3):213–217CrossRefPubMedGoogle Scholar
  111. Xu Y, Lu Y, Xie C, Gao S, Wan J, Prasanna BM (2012) Whole-genome strategies for marker-assisted plant breeding. Mol Breed 29(4):833–854CrossRefGoogle Scholar
  112. Xue R, Fang Z, Zhang M, Yi Z, Wen C, Shi T (2013) TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res 41(D1):D1089–D1095CrossRefPubMedGoogle Scholar
  113. Yang C, Hasselgren CH, Boyer S, Arvidson K, Aveston S, Dierkes P, Benigni R, Benz RD, Contrera J, Kruhlak NL, Matthews EJ, Han X, Jaworska J, Kemper RA, Rathman JF, Richard AM (2008) Understanding genetic toxicity through data mining: the process of building knowledge by integrating multiple genetic toxicity databases. Toxicol Mech Methods 18(2–3):277–295CrossRefPubMedGoogle Scholar
  114. Yang J, Roy A, Zhang Y (2013) Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29(20):2588–2595CrossRefPubMedPubMedCentralGoogle Scholar
  115. Yang D, Du X, Yang Z, Liang Z, Guo Z, Liu Y (2014) Transcriptomics, proteomics, and metabolomics to reveal mechanisms underlying plant secondary metabolism. Eng Life Sci 14(5):456–466CrossRefGoogle Scholar
  116. Ye H, Ye L, Kang H, Zhang D, Tao L, Tang K, Liu X, Zhu R, Liu Q, Chen YZ, Li Y, Cao Z (2011) HIT: linking herbal active ingredients to targets. Nucleic Acids Res 39(D1):D1055–D1059CrossRefPubMedGoogle Scholar
  117. Youns M, Hoheisel JD, Efferth T (2010) Toxicogenomics for the prediction of toxicity related to herbs from traditional Chinese medicine. Planta Med 76:2019–2025CrossRefPubMedGoogle Scholar
  118. Zeng X, Zhang P, He W, Qin C, Chen S, Tao L, Wang Y, Tan Y, Gao D, Wang B, Chen Z, Chen W, Jiang YY, Chen YZ (2018) NPASS: natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Res 46(D1):D1217–D1222CrossRefPubMedGoogle Scholar
  119. Zhang L, Berleant D, Ding J, Cao T, Wurtele ES (2009) PathBinder–text empirics and automatic extraction of biomolecular interactions. BMC Bioinforma 10(11):1CrossRefGoogle Scholar
  120. Zhang RZ, Yu SJ, Bai H, Ning K (2017) TCM-mesh: the database and analytical system for network pharmacology analysis for TCM preparations. Sci Rep 7(1):2821CrossRefPubMedPubMedCentralGoogle Scholar
  121. Zhao XP, Fan XH, Yu J, Cheng YY (2004) A method for predicting activity of traditional Chinese medicine based on quantitative composition-activity relationship of neural network model. Zhongguo Zhong Yao Za Zhi 29(11):1082–1085PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Insha Zahoor
    • 1
    • 2
    Email author
  • Amrina Shafi
    • 2
  • Khalid Majid Fazili
    • 1
    • 2
  • Ehtishamul Haq
    • 2
  1. 1.Bioinformatics CentreUniversity of KashmirSrinagarIndia
  2. 2.Department of Biotechnology, School of Biological SciencesUniversity of KashmirSrinagarIndia

Personalised recommendations