Advertisement

Quantum Dual Adversary for Hidden Subgroups and Beyond

  • Aleksandrs BelovsEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11493)

Abstract

An explicit quantum dual adversary for the S-isomorphism problem is constructed. As a consequence, this gives an alternative proof that the query complexity of the dihedral hidden subgroup problem is polynomial.

Keywords

Quantum algorithms Hidden subgroup problem Property testing Isomorphism testing Quantum aversary bound 

Notes

Acknowledgements

I am grateful to all the persons with whom I have discussed this problem. Especially, I would like to thank Martin Roetteler, Dmitry Gavinsky and Tsuyoshi Ito.

References

  1. 1.
    Ambainis, A., Belovs, A., Regev, O., de Wolf, R.: Efficient quantum algorithms for (gapped) group testing and junta testing. In: Proceedings of 27th ACM-SIAM SODA, pp. 903–922 (2016)Google Scholar
  2. 2.
    Babai, L., Chakraborty, S.: Property testing of equivalence under a permutation group action (2008)Google Scholar
  3. 3.
    Bacon, D., Childs, A.M., van Dam, W.: From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups. In: Proceedings of 46th IEEE FOCS, pp. 469–478 (2005)Google Scholar
  4. 4.
    Belovs, A., Childs, A.M., Jeffery, S., Kothari, R., Magniez, F.: Time-efficient quantum walks for 3-distinctness. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 105–122. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39206-1_10CrossRefGoogle Scholar
  5. 5.
    Belovs, A., Reichardt, B.W.: Span programs and quantum algorithms for st-connectivity and claw detection. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 193–204. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33090-2_18CrossRefzbMATHGoogle Scholar
  6. 6.
    Ettinger, M., Høyer, P., Knill, E.: The quantum query complexity of the hidden subgroup problem is polynomial. Inf. Process. Lett. 91(1), 43–48 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and orbit coset in quantum computing. In: Proceedings of 35th ACM STOC, pp. 1–9 (2003)Google Scholar
  8. 8.
    Grigni, M., Schulman, L., Vazirani, M., Vazirani, U.: Quantum mechanical algorithms for the nonabelian hidden subgroup problem. Combinatorica 24(1), 137–154 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Harrow, A.W., Lin, C.Y.Y., Montanaro, A.: Sequential measurements, disturbance and property testing. In: Proceedings of 28th ACM-SIAM SODA, pp. 1598–1611 (2017)Google Scholar
  10. 10.
    Hausladen, P., Wootters, W.K.: A “pretty good” measurement for distinguishing quantum states. J. Mod. Opt. 41(12), 2385–2390 (1994)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  12. 12.
    Høyer, P., Lee, T., Špalek, R.: Negative weights make adversaries stronger. In: Proceedings of 39th ACM STOC, pp. 526–535 (2007)Google Scholar
  13. 13.
    Kitaev, A.: Quantum measurements and the Abelian stabilizer problem (1995)Google Scholar
  14. 14.
    Kobayashi, H., Le Gall, F.: Dihedral hidden subgroup problem: a survey. Inf. Media Technol. 1(1), 178–185 (2006)Google Scholar
  15. 15.
    Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM J. Comput. 35, 170–188 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem (2011)Google Scholar
  17. 17.
    Lee, T., Mittal, R., Reichardt, B.W., Špalek, R., Szegedy, M.: Quantum query complexity of state conversion. In: Proceedings of 52nd IEEE FOCS, pp. 344–353 (2011)Google Scholar
  18. 18.
    Moore, C., Rockmore, D., Russell, A., Schulman, L.J.: The power of basis selection in Fourier sampling: hidden subgroup problems in affine groups. In: Proceedings of 15th ACM-SIAM SODA, pp. 1113–1122 (2004)Google Scholar
  19. 19.
    Regev, O.: Quantum computation and lattice problems. SIAM J. Comput. 33(3), 738–760 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space (2004)Google Scholar
  21. 21.
    Reichardt, B.W.: Span programs and quantum query complexity: the general adversary bound is nearly tight for every boolean function. In: Proceedings of 50th IEEE FOCS, pp. 544–551 (2009)Google Scholar
  22. 22.
    Reichardt, B.W.: Reflections for quantum query algorithms. In: Proceedings of 22nd ACM-SIAM SODA, pp. 560–569 (2011)Google Scholar
  23. 23.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Simon, D.: On the power of quantum computation. SIAM J. Comput. 26, 1474–1483 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of ComputingUniversity of LatviaRigaLatvia

Personalised recommendations