Advertisement

Self-stabilizing Gellular Automata

  • Tatsuya Yamashita
  • Akira Yagawa
  • Masami HagiyaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11493)

Abstract

Gellular automata are a class of cellular automata having the features: asynchrony, Boolean totality, and non-camouflage. Gellular automata have been introduced as models of smart materials made of porous gels and chemical solutions, which are expected to have abilities such as self-repair. Therefore investigating gellular automata that are self-stable is an important research topic as self-stability implies convergence to a target configuration even under external disturbances. In this paper, we present gellular automata which solve maze problems self-stably. We also briefly describe gellular automata that solve the leader election problem. We thus discuss the possibility of implementing self-stable distributed algorithms by gellular automata.

Keywords

Gellular automata Maze problem Self-stabilizing 

Notes

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number 17K19961.

References

  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)CrossRefGoogle Scholar
  3. 3.
    Golzari, S., Meybodi, M.R.: A maze routing algorithm based on two dimensional cellular automata. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 564–570. Springer, Heidelberg (2006).  https://doi.org/10.1007/11861201_65CrossRefzbMATHGoogle Scholar
  4. 4.
    Hagiya, M., et al.: On DNA-based gellular automata. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) UCNC 2014. LNCS, vol. 8553, pp. 177–189. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08123-6_15CrossRefGoogle Scholar
  5. 5.
    Hosoya, T., Kawamata, I., Shin-ichiro, M.N., Murata, S.: Pattern formation on discrete gel matrix based on DNA computing. New Gener. Comput. 37(1), 97–111 (2019)CrossRefGoogle Scholar
  6. 6.
    Isokawa, T., Peper, F., Kawamata, I., Matsui, N., Murata, S., Hagiya, M.: Universal totalistic asynchonous cellular automaton and its possible implementation by DNA. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 182–195. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-41312-9_15CrossRefzbMATHGoogle Scholar
  7. 7.
    Kawamata, I., Yoshizawa, S., Takabatake, F., Sugawara, K., Murata, S.: Discrete DNA reaction-diffusion model for implementing simple cellular automaton. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 168–181. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-41312-9_14CrossRefGoogle Scholar
  8. 8.
    Murata, S., Konagaya, A., Kobayashi, S., Saito, H., Hagiya, M.: Molecular robotics: a new paradigm for artifacts. New Gener. Comput. 31(1), 27–45 (2013)CrossRefGoogle Scholar
  9. 9.
    Pech, A., Hingston, P., Masek, M., Lam, C.P.: Evolving cellular automata for maze generation. In: Chalup, S.K., Blair, A.D., Randall, M. (eds.) ACALCI 2015. LNCS (LNAI), vol. 8955, pp. 112–124. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-14803-8_9CrossRefGoogle Scholar
  10. 10.
    Rozenberg, G., Bäck, T., Kok, J.N.: Handbook of Natural Computing. Springer, Berlin (2012).  https://doi.org/10.1007/978-3-540-92910-9CrossRefzbMATHGoogle Scholar
  11. 11.
    Wang, S., Imai, K., Hagiya, M.: On the composition of signals in gellular automata. In: 2014 Second International Symposium on Computing and Networking (CANDAR), pp. 499–502. IEEE (2014)Google Scholar
  12. 12.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)zbMATHGoogle Scholar
  13. 13.
    Yamashita, T., Hagiya, M.: Simulating population protocols by gellular automata. In: 2018 57th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 1579–1585. IEEE (2018)Google Scholar
  14. 14.
    Yamashita, T., Isokawa, T., Peper, F., Kawamata, I., Hagiya, M.: Turing-completeness of asynchronous non-camouflage cellular automata. In: Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E. (eds.) AUTOMATA 2017. LNCS, vol. 10248, pp. 187–199. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58631-1_15CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tatsuya Yamashita
    • 1
  • Akira Yagawa
    • 1
  • Masami Hagiya
    • 1
    Email author
  1. 1.The University of TokyoTokyoJapan

Personalised recommendations