Advertisement

Computational Limitations of Affine Automata

  • Mika HirvensaloEmail author
  • Etienne Moutot
  • Abuzer Yakaryılmaz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11493)

Abstract

We present two new results on the computational limitations of affine automata. First, we show that the computation of bounded-error rational-valued affine automata is simulated in logarithmic space. Second, we give an impossibility result for algebraic-valued affine automata. As a result, we identify some unary languages (in logarithmic space) that are not recognized by algebraic-valued affine automata with cutpoints.

Notes

Acknowledgments

Yakaryılmaz was partially supported by Akadēmiskā personāla atjaunotne un kompetenču pilnveide Latvijaspilnveide Latvijas Universitātē līg Nr. 8.2.2.0/18/A/010 LU Open image in new window Nr. ESS2018/289 and ERC Advanced Grant MQC. Hirvensalo was partially supported by the Väisälä Foundation and Moutot by ANR project CoCoGro (ANR-16-CE40-0005).

References

  1. 1.
    Ambainis, A., Beaudry, M., Golovkins, M., Ķikusts, A., Mercer, M., Thérien, D.: Algebraic results on quantum automata. Theory Comput. Syst. 39(1), 165–188 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ambainis, A., Yakaryılmaz, A.: Automata and quantum computing. CoRR, abs/1507.0:1–32 (2015)Google Scholar
  3. 3.
    Díaz-Caro, A., Yakaryılmaz, A.: Affine computation and affine automaton. In: Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS, vol. 9691, pp. 146–160. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-34171-2_11CrossRefzbMATHGoogle Scholar
  4. 4.
    Evertse, J.-H.: On sums of S-units and linear recurrences. Compositio Math. 53(2), 225–244 (1984)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Hansel, G.: A simple proof of the Skolem-Mahler-Lech theorem. Theoret. Comput. Sci. 43(1), 91–98 (1986)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hirvensalo, M., Moutot, E., Yakaryılmaz, A.: On the computational power of affine automata. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 405–417. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-53733-7_30CrossRefzbMATHGoogle Scholar
  7. 7.
    Ibrahimov, R., Khadiev, K., Prūsis, K., Yakaryılmaz, A.: Error-free affine, unitary, and probabilistic OBDDs. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 175–187. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94631-3_15CrossRefGoogle Scholar
  8. 8.
    Jeandel, E.: Topological automata. Theory Comput. Syst. 40(4), 397–407 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: FOCS, pp. 66–75. IEEE (1997)Google Scholar
  10. 10.
    Macarie, I.I.: Space-efficient deterministic simulation of probabilistic automata. SIAM J. Comput. 27(2), 448–465 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yakaryılmaz, A., Cem Say, A.C.: Languages recognized by nondeterministic quantum finite automata. Quantum Inf. Comput. 10(9&10), 747–770 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Paz, A.: Introduction to Probabilistic Automata (Computer Science and Applied Mathematics). Academic Press Inc., Orlando (1971)Google Scholar
  13. 13.
    Rabin, M.O.: Probabilistic automata. Inf. Control 6, 230–243 (1963)CrossRefGoogle Scholar
  14. 14.
    Sipser, M.: Introduction to the Theory of Computation, 1st edn. International Thomson Publishing, Stamford (1996)zbMATHGoogle Scholar
  15. 15.
    Turakainen, P.: On Probabilistic Automata and their Generalizations. Annales Academiae Scientiarum Fennicae. Series A 429 (1969)Google Scholar
  16. 16.
    Turakainen, P.: Generalized automata and stochastic languages. Proc. Am. Math. Soc. 21(2), 303–309 (1969)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Turakainen, P.: On nonstochastic languages and homomorphic images of stochastic languages. Inf. Sci. 24(3), 229–253 (1981)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Villagra, M., Yakaryılmaz, A.: Language recognition power and succinctness of affine automata. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 116–129. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-41312-9_10CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland
  2. 2.LIP, ENS de Lyon – CNRS – UCBL – Université de Lyon, École Normale Supérieure de LyonLyonFrance
  3. 3.Center for Quantum Computer Science, Faculty of ComputingUniversity of LatviaRīgaLatvia

Personalised recommendations