Advertisement

Dimension-Six Matrix Elements from Sum Rules

  • Matthew John KirkEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

As we have seen in Sect. 2.4.2, the SM contribution to meson mixing arises at the 1-loop level and is both CKM and GIM suppressed. This makes these observables highly sensitive to new physics contributions (an issue which we will explore further in Chap. 7), and so a precise knowledge of the theoretical predictions is very important.

References

  1. 1.
    Asatrian HM, Hovhannisyan A, Nierste U, Yeghiazaryan A (2017) Towards next-to-next-to-leading-log accuracy for the width difference in the \(B_s-\bar{B}_s\) system: fermionic contributions to order \((m_c/m_b)^0\) and \((m_c/m_b)^1\). JHEP 10:191.  https://doi.org/10.1007/JHEP10(2017)191, arXiv:1709.02160
  2. 2.
    Dalgic E, Gray A, Gamiz E, Davies CTH, Lepage GP, Shigemitsu J et al (2007) \(B^0_{s} - \bar{B}^0_s\) mixing parameters from unquenched lattice QCD. Phys Rev D 76:011501.  https://doi.org/10.1103/PhysRevD.76.011501, arXiv:hep-lat/0610104
  3. 3.
    ETM collaboration, Carrasco N et al (2014) B-physics from \(N_f\) = 2 tmQCD: the Standard Model and beyond. JHEP 03:016.  https://doi.org/10.1007/JHEP03(2014)016, arXiv:1308.1851
  4. 4.
    Fermilab Lattice, MILC collaboration, Bazavov A et al (2016) \(B^0_{(s)}\)-mixing matrix elements from lattice QCD for the Standard Model and beyond. Phys Rev D 93:113016.  https://doi.org/10.1103/PhysRevD.93.113016, arXiv:1602.03560
  5. 5.
    Shifman MA, Vainshtein AI, Zakharov VI (1979) QCD and resonance physics. Theoretical foundations. Nucl Phys B 147:385–447.  https://doi.org/10.1016/0550-3213(79)90022-1ADSCrossRefGoogle Scholar
  6. 6.
    Shifman MA, Vainshtein AI, Zakharov VI (1979) QCD and resonance physics: applications. Nucl Phys B 147:448–518.  https://doi.org/10.1016/0550-3213(79)90023-3ADSCrossRefGoogle Scholar
  7. 7.
    Chetyrkin KG, Kataev AL, Krasulin AB, Pivovarov AA (1986) Calculation of the \(K^0\)-\(\bar{K}^0\) mixing parameter via the QCD sum rules at finite energies. Phys Lett B 174:104.  https://doi.org/10.1016/0370-2693(86)91137-8, arXiv:hep-ph/0103230ADSCrossRefGoogle Scholar
  8. 8.
    Korner JG, Onishchenko AI, Petrov AA, Pivovarov AA (2003) \(B^0-\bar{B}^0\) mixing beyond factorization. Phys Rev Lett 91:192002.  https://doi.org/10.1103/PhysRevLett.91.192002, arXiv:hep-ph/0306032
  9. 9.
    Grozin AG, Klein R, Mannel T, Pivovarov AA (2016) \(B^0-\bar{B}^0\) mixing at next-to-leading order. Phys Rev D 94:034024.  https://doi.org/10.1103/PhysRevD.94.034024, arXiv:1606.06054
  10. 10.
    Mannel T, Pecjak BD, Pivovarov AA (2011) Sum rule estimate of the subleading non-perturbative contributions to \(B_s - \bar{B}_s\) mixing. Eur Phys J C 71:1607.  https://doi.org/10.1140/epjc/s10052-011-1607-4, arXiv:hep-ph/0703244
  11. 11.
    Baek MS, Lee J, Liu C, Song HS (1998) Four quark operators relevant to B meson lifetimes from QCD sum rules. Phys Rev D 57:4091–4096.  https://doi.org/10.1103/PhysRevD.57.4091, arXiv:hep-ph/9709386ADSCrossRefGoogle Scholar
  12. 12.
    Cheng H-Y, Yang K-C (1999) Nonspectator effects and \(B\) meson lifetimes from a field theoretic calculation. Phys Rev D 59:014011.  https://doi.org/10.1103/PhysRevD.59.014011, arXiv:hep-ph/9805222
  13. 13.
    Lenz A (2015) Lifetimes and heavy quark expansion. Int J Mod Phys A 30:1543005.  https://doi.org/10.1142/S0217751X15430058, arXiv:1405.3601ADSCrossRefGoogle Scholar
  14. 14.
    Becirevic D (2001) Theoretical progress in describing the B meson lifetimes. PoS HEP2001 098. arXiv:hep-ph/0110124
  15. 15.
    Lenz A, Rauh T (2013) D-meson lifetimes within the heavy quark expansion. Phys Rev D 88:034004.  https://doi.org/10.1103/PhysRevD.88.034004, arXiv:1305.3588
  16. 16.
    Bobrowski M, Lenz A, Riedl J, Rohrwild J (2010) How large can the SM contribution to CP violation in \(D^0-\bar{D}^0\) mixing be? JHEP 03:009.  https://doi.org/10.1007/JHEP03(2010)009, arXiv:1002.4794
  17. 17.
    Bigi IIY, Uraltsev NG (2001) \(D^0-\bar{D}^0\) oscillations as a probe of quark hadron duality. Nucl Phys B 592:92–106.  https://doi.org/10.1016/S0550-3213(00)00604-0, arXiv:hep-ph/0005089ADSCrossRefGoogle Scholar
  18. 18.
    Georgi H (1992) \(D\)-\(\bar{D}\) mixing in heavy quark effective field theory. Phys Lett B 297:353–357.  https://doi.org/10.1016/0370-2693(92)91274-D, arXiv:hep-ph/9209291ADSCrossRefGoogle Scholar
  19. 19.
    Ohl T, Ricciardi G, Simmons EH (1993) D-anti-D mixing in heavy quark effective field theory: the sequel. Nucl Phys B 403:605–632.  https://doi.org/10.1016/0550-3213(93)90364-U, arXiv:hep-ph/9301212ADSCrossRefGoogle Scholar
  20. 20.
    Bobrowski M, Lenz A, Rauh T (2012) Short distance \(D^0-\bar{D}^0\) mixing. In: Proceedings, 5th International workshop on charm physics (Charm 2012): Honolulu, Hawaii, USA, May 14–17, 2012. arXiv:1208.6438
  21. 21.
    Flynn JM, Hernandez OF, Hill BR (1991) Renormalization of four fermion operators determining B anti-B mixing on the lattice. Phys Rev D 43:3709–3714.  https://doi.org/10.1103/PhysRevD.43.3709ADSCrossRefGoogle Scholar
  22. 22.
    Buchalla G (1997) Renormalization of \(\Delta B = 2\) transitions in the static limit beyond leading logarithms. Phys Lett B 395:364–368.  https://doi.org/10.1016/S0370-2693(97)00043-9, arXiv:hep-ph/9608232ADSCrossRefGoogle Scholar
  23. 23.
    Ciuchini M, Franco E, Gimenez V (1996) Next-to-leading order renormalization of the \(\Delta B = 2\) operators in the static theory. Phys Lett B 388:167–172.  https://doi.org/10.1016/0370-2693(96)01131-8, arXiv:hep-ph/9608204ADSCrossRefGoogle Scholar
  24. 24.
    Collins JC (1986) Renormalization. In: Cambridge monographs on mathematical physics, vol 26. Cambridge University Press, CambridgeGoogle Scholar
  25. 25.
    Buras AJ, Weisz PH (1990) QCD nonleading corrections to weak decays in dimensional regularization and ’t Hooft-Veltman schemes. Nucl Phys B 333:66–99.  https://doi.org/10.1016/0550-3213(90)90223-ZADSCrossRefGoogle Scholar
  26. 26.
    Herrlich S, Nierste U (1995) Evanescent operators, scheme dependences and double insertions. Nucl Phys B 455:39–58.  https://doi.org/10.1016/0550-3213(95)00474-7, arXiv:hep-ph/9412375ADSCrossRefGoogle Scholar
  27. 27.
    Beneke M, Buchalla G, Greub C, Lenz A, Nierste U (1999) Next-to-leading order QCD corrections to the lifetime difference of \(B_s\) mesons. Phys Lett B 459:631–640.  https://doi.org/10.1016/S0370-2693(99)00684-X, arXiv:hep-ph/9808385ADSCrossRefGoogle Scholar
  28. 28.
    Beneke M, Buchalla G, Dunietz I (1996) Width difference in the \(B_s-\bar{B_s}\) system. Phys Rev D 54:4419–4431.  https://doi.org/10.1103/PhysRevD.54.4419,  https://doi.org/10.1103/PhysRevD.83.119902, arXiv:hep-ph/9605259
  29. 29.
    Nogueira P (1993) Automatic Feynman graph generation. J Comput Phys 105:279–289.  https://doi.org/10.1006/jcph.1993.1074ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Jamin M, Lautenbacher ME (1993) TRACER: version 1.1: a mathematica package for \(\gamma \) algebra in arbitrary dimensions. Comput Phys Commun 74:265–288.  https://doi.org/10.1016/0010-4655(93)90097-VADSCrossRefGoogle Scholar
  31. 31.
    Patel HH (2015) Package-X: a mathematica package for the analytic calculation of one-loop integrals. Comput Phys Commun 197:276–290.  https://doi.org/10.1016/j.cpc.2015.08.017, arXiv:1503.01469ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Patel HH (2017) Package-X 2.0: a mathematica package for the analytic calculation of one-loop integrals. Comput Phys Commun 218:66–70.  https://doi.org/10.1016/j.cpc.2017.04.015, arXiv:1612.00009ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Lenz A, Nierste U (2007) Theoretical update of \(B_s - \bar{B}_s\) mixing. JHEP 06:072.  https://doi.org/10.1088/1126-6708/2007/06/072, arXiv:hep-ph/0612167CrossRefGoogle Scholar
  34. 34.
    Eichten E, Hill BR (1990) An effective field theory for the calculation of matrix elements involving heavy quarks. Phys Lett B 234:511–516.  https://doi.org/10.1016/0370-2693(90)92049-OADSCrossRefGoogle Scholar
  35. 35.
    Smirnov AV (2008) Algorithm FIRE-Feynman Integral REduction. JHEP 10:107.  https://doi.org/10.1088/1126-6708/2008/10/107, arXiv:0807.3243ADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Smirnov AV, Smirnov VA (2013) FIRE4, LiteRed and accompanying tools to solve integration by parts relations. Comput Phys Commun 184:2820–2827.  https://doi.org/10.1016/j.cpc.2013.06.016, arXiv:1302.5885ADSzbMATHCrossRefGoogle Scholar
  37. 37.
    Smirnov AV (2015) FIRE5: a C++ implementation of Feynman Integral REduction. Comput Phys Commun 189:182–191.  https://doi.org/10.1016/j.cpc.2014.11.024, arXiv:1408.2372ADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Chetyrkin KG, Tkachov FV (1981) Integration by parts: the algorithm to calculate beta functions in 4 loops. Nucl Phys B 192:159–204.  https://doi.org/10.1016/0550-3213(81)90199-1ADSCrossRefGoogle Scholar
  39. 39.
    Laporta S (2000) High precision calculation of multiloop Feynman integrals by difference equations. Int J Mod Phys A 15:5087–5159.  https://doi.org/10.1016/S0217-751X(00)00215-7,  https://doi.org/10.1142/S0217751X00002157, arXiv:hep-ph/0102033
  40. 40.
    Grozin AG, Lee RN (2009) Three-loop HQET vertex diagrams for B0-anti-B0 mixing. JHEP 02:047.  https://doi.org/10.1088/1126-6708/2009/02/047, arXiv:0812.4522CrossRefGoogle Scholar
  41. 41.
    Ball P, Braun VM (1994) Next-to-leading order corrections to meson masses in the heavy quark effective theory. Phys Rev D 49:2472–2489.  https://doi.org/10.1103/PhysRevD.49.2472, arXiv:hep-ph/9307291ADSCrossRefGoogle Scholar
  42. 42.
    Broadhurst DJ, Grozin AG (1992) Operator product expansion in static quark effective field theory: large perturbative correction. Phys Lett B 274:421–427.  https://doi.org/10.1016/0370-2693(92)92009-6, arXiv:hep-ph/9908363ADSCrossRefGoogle Scholar
  43. 43.
    Bagan E, Ball P, Braun VM, Dosch HG (1992) QCD sum rules in the effective heavy quark theory. Phys Lett B 278:457–464.  https://doi.org/10.1016/0370-2693(92)90585-RADSCrossRefGoogle Scholar
  44. 44.
    Neubert M (1992) Heavy meson form-factors from QCD sum rules. Phys Rev D 45:2451–2466.  https://doi.org/10.1103/PhysRevD.45.2451ADSCrossRefGoogle Scholar
  45. 45.
    Chetyrkin KG, Kuhn JH, Steinhauser M (2000) RunDec: a mathematica package for running and decoupling of the strong coupling and quark masses. Comput Phys Commun 133:43–65.  https://doi.org/10.1016/S0010-4655(00)00155-7, arXiv:hep-ph/0004189ADSzbMATHCrossRefGoogle Scholar
  46. 46.
    Herren F, Steinhauser M (2018) Version 3 of RunDec and CRunDec. Comput Phys Commun 224:333–345.  https://doi.org/10.1016/j.cpc.2017.11.014, arXiv:1703.03751ADSCrossRefGoogle Scholar
  47. 47.
    Particle Data Group collaboration, Patrignani C et al (2016) Review of particle physics. Chin Phys C 40:100001.  https://doi.org/10.1088/1674-1137/40/10/100001CrossRefGoogle Scholar
  48. 48.
    Beneke M, Maier A, Piclum J, Rauh T (2015) The bottom-quark mass from non-relativistic sum rules at NNNLO. Nucl Phys B 891:42–72.  https://doi.org/10.1016/j.nuclphysb.2014.12.001, arXiv:1411.3132ADSzbMATHCrossRefGoogle Scholar
  49. 49.
    Beneke M, Maier A, Piclum J, Rauh T (2016) NNNLO determination of the bottom-quark mass from non-relativistic sum rules. PoS RADCOR2015 035.  https://doi.org/10.22323/1.235.0035, arXiv:1601.02949
  50. 50.
    Baikov PA, Chetyrkin KG, Kühn JH (2017) Five-loop running of the QCD coupling constant. Phys Rev Lett 118:082002.  https://doi.org/10.1103/PhysRevLett.118.082002, arXiv:1606.08659
  51. 51.
    Herzog F, Ruijl B, Ueda T, Vermaseren JAM, Vogt A (2017) The five-loop beta function of Yang-Mills theory with fermions. JHEP 02:090.  https://doi.org/10.1007/JHEP02(2017)090, arXiv:1701.01404
  52. 52.
    Luthe T, Maier A, Marquard P, Schroder Y (2017) Complete renormalization of QCD at five loops. JHEP 03:020.  https://doi.org/10.1007/JHEP03(2017)020, arXiv:1701.07068
  53. 53.
    Luthe T, Maier A, Marquard P, Schroder Y (2017) The five-loop Beta function for a general gauge group and anomalous dimensions beyond Feynman gauge. JHEP 10:166.  https://doi.org/10.1007/JHEP10(2017)166, arXiv:1709.07718
  54. 54.
    Chetyrkin KG, Falcioni G, Herzog F, Vermaseren JAM (2017) Five-loop renormalisation of QCD in covariant gauges. JHEP 10:179.  https://doi.org/10.1007/JHEP12(2017)006,  https://doi.org/10.3204/PUBDB-2018-02123,  https://doi.org/10.1007/JHEP10(2017)179, arXiv:1709.08541
  55. 55.
    Aoki S et al (2017) Review of lattice results concerning low-energy particle physics. Eur Phys J C 77:112.  https://doi.org/10.1140/epjc/s10052-016-4509-7, arXiv:1607.00299
  56. 56.
    HFLAV collaboration (2017) B lifetime and oscillation parameters, Summer 2017. http://www.slac.stanford.edu/xorg/hflav/osc/summer_2017/
  57. 57.
    Grozin AG, Mannel T, Pivovarov AA (2017) Towards a next-to-next-to-leading order analysis of matching in \(B^0-\bar{B}^0\) mixing. Phys Rev D 96:074032.  https://doi.org/10.1103/PhysRevD.96.074032, arXiv:1706.05910
  58. 58.
    Beneke M (1998) A quark mass definition adequate for threshold problems. Phys Lett B 434:115–125.  https://doi.org/10.1016/S0370-2693(98)00741-2, arXiv:hep-ph/9804241ADSCrossRefGoogle Scholar
  59. 59.
    Hoang AH, Ligeti Z, Manohar AV (1999) B decay and the Upsilon mass. Phys Rev Lett 82:277–280.  https://doi.org/10.1103/PhysRevLett.82.277, arXiv:hep-ph/9809423ADSCrossRefGoogle Scholar
  60. 60.
    Bigi IIY, Shifman MA, Uraltsev N, Vainshtein AI (1997) High power \(n\) of \(m_b\) in beauty widths and \(n=5 \rightarrow \infty \) limit. Phys Rev D 56:4017–4030.  https://doi.org/10.1103/PhysRevD.56.4017, arXiv:hep-ph/9704245ADSCrossRefGoogle Scholar
  61. 61.
    Grozin AG, Mannel T, Pivovarov AA (2018) \(B^0-\bar{B}^0\) mixing: matching to HQET at NNLO. Phys Rev D 98:054020.  https://doi.org/10.1103/PhysRevD.98.054020, arXiv:1806.00253
  62. 62.
    Laplace S, Ligeti Z, Nir Y, Perez G (2002) Implications of the CP asymmetry in semileptonic B decay. Phys Rev D 65:094040.  https://doi.org/10.1103/PhysRevD.65.094040, arXiv:hep-ph/0202010
  63. 63.
    Beneke M, Buchalla G, Greub C, Lenz A, Nierste U (2002) The \(B^+\)\(B^0_d\) lifetime difference beyond leading logarithms. Nucl Phys B 639:389–407.  https://doi.org/10.1016/S0550-3213(02)00561-8, arXiv:hep-ph/0202106ADSCrossRefGoogle Scholar
  64. 64.
    Ciuchini M, Franco E, Lubicz V, Mescia F (2002) Next-to-leading order QCD corrections to spectator effects in lifetimes of beauty hadrons. Nucl Phys B 625:211–238.  https://doi.org/10.1016/S0550-3213(02)00006-8, arXiv:hep-ph/0110375ADSCrossRefGoogle Scholar
  65. 65.
    Franco E, Lubicz V, Mescia F, Tarantino C (2002) Lifetime ratios of beauty hadrons at the next-to-leading order in QCD. Nucl Phys B 633:212–236.  https://doi.org/10.1016/S0550-3213(02)00262-6, arXiv:hep-ph/0203089ADSCrossRefGoogle Scholar
  66. 66.
    Gabbiani F, Onishchenko AI, Petrov AA (2004) Spectator effects and lifetimes of heavy hadrons. Phys Rev D 70:094031.  https://doi.org/10.1103/PhysRevD.70.094031, arXiv:hep-ph/0407004
  67. 67.
    Lucha W, Melikhov D, Simula S (2011) OPE, charm-quark mass, and decay constants of D and D\(_s\) mesons from QCD sum rules. Phys Lett B 701:82–88.  https://doi.org/10.1016/j.physletb.2011.05.031, arXiv:1101.5986ADSCrossRefGoogle Scholar
  68. 68.
    Gelhausen P, Khodjamirian A, Pivovarov AA, Rosenthal D (2013) Decay constants of heavy-light vector mesons from QCD sum rules. Phys Rev D 88:014015.  https://doi.org/10.1103/PhysRevD.88.014015,  https://doi.org/10.1103/PhysRevD.91.099901,  https://doi.org/10.1103/PhysRevD.89.099901, arXiv:1305.5432
  69. 69.
    UKQCD collaboration, Di Pierro M, Sachrajda CT (1998) A lattice study of spectator effects in inclusive decays of B mesons. Nucl Phys B 534:373–391.  https://doi.org/10.1016/S0550-3213(98)00580-X, arXiv:hep-lat/9805028ADSCrossRefGoogle Scholar
  70. 70.
    Carrasco N et al (2014) \(D^0-\bar{D}^0\) mixing in the standard model and beyond from \(N_f=2\) twisted mass QCD. Phys Rev D 90:014502.  https://doi.org/10.1103/PhysRevD.90.014502, arXiv:1403.7302
  71. 71.
    ETM collaboration, Carrasco N, Dimopoulos P, Frezzotti R, Lubicz V, Rossi GC, Simula S et al (2015) \(\Delta S=2\) and \(\Delta C=2\) bag parameters in the standard model and beyond from \(N_f=2+1+1\) twisted-mass lattice QCD. Phys Rev D 92:034516.  https://doi.org/10.1103/PhysRevD.92.034516, arXiv:1505.06639
  72. 72.
    Bazavov A et al (2018) Short-distance matrix elements for \(D^0\)-meson mixing for \(N_f=2+1\) lattice QCD. Phys Rev D 97:034513.  https://doi.org/10.1103/PhysRevD.97.034513, arXiv:1706.04622
  73. 73.
    Wang Z-G (2015) Analysis of the masses and decay constants of the heavy-light mesons with QCD sum rules. Eur Phys J C 75:427.  https://doi.org/10.1140/epjc/s10052-015-3653-9, arXiv:1506.01993
  74. 74.
    Narison S (2013) A fresh look into \(m_{c,b}\) and precise \(f_{D_(s),B_(s)}\) from heavy-light QCD spectral sum rules. Phys Lett B 718:1321–1333.  https://doi.org/10.1016/j.physletb.2012.10.057, arXiv:1209.2023ADSCrossRefGoogle Scholar
  75. 75.
    Beneke M, Kiyo Y, Maier A, Piclum J (2016) Near-threshold production of heavy quarks with QQbar\(\_\)threshold. Comput Phys Commun 209:96–115.  https://doi.org/10.1016/j.cpc.2016.07.026, arXiv:1605.03010ADSCrossRefGoogle Scholar
  76. 76.
    Beneke M, Maier A, Rauh T, Ruiz-Femenia P (2018) Non-resonant and electroweak NNLO correction to the \(e^+ e^-\) top anti-top threshold. JHEP 02:125.  https://doi.org/10.1007/JHEP02(2018)125, arXiv:1711.10429

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di FisicaLa Sapienza, University of RomeRomeItaly

Personalised recommendations