Advertisement

Charming New Physics in Rare \(B_{s}\) Decays and Mixing?

  • Matthew John KirkEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

As we have discussed in Sect. 1.2, flavour processes such as rare B decays are excellent probes of new physics at the electroweak scale and beyond, due to their strong suppression in the SM.

References

  1. 1.
    Buras AJ, Girrbach J (2013) Left-handed \(Z^{\prime }\) and \(Z\) FCNC quark couplings facing new \(b \rightarrow s \mu ^+ \mu ^-\) data. JHEP 12:009.  https://doi.org/10.1007/JHEP12(2013)009, arXiv:1309.2466
  2. 2.
    Gauld R, Goertz F, Haisch U (2014) An explicit Z’-boson explanation of the \(B \rightarrow K^* \mu ^+ \mu ^-\) anomaly. JHEP 01:069.  https://doi.org/10.1007/JHEP01(2014)069, arXiv:1310.1082
  3. 3.
    Buras AJ, De Fazio F, Girrbach J (2014) 331 models facing new \(b \rightarrow s\mu ^+ \mu ^-\) data. JHEP 02:112.  https://doi.org/10.1007/JHEP02(2014)112, arXiv:1311.6729
  4. 4.
    Datta A, Duraisamy M, Ghosh D (2014) Explaining the \(B \rightarrow K^\ast \mu ^+ \mu ^-\) data with scalar interactions. Phys Rev D 89:071501.  https://doi.org/10.1103/PhysRevD.89.071501, arXiv:1310.1937
  5. 5.
    Altmannshofer W, Gori S, Pospelov M, Yavin I (2014) Quark flavor transitions in \(L_\mu -L_\tau \) models. Phys Rev D 89:095033.  https://doi.org/10.1103/PhysRevD.89.095033, arXiv:1403.1269
  6. 6.
    Hiller G, Schmaltz M (2014) \(R_K\) and future \(b \rightarrow s \ell \ell \) physics beyond the standard model opportunities. Phys Rev D 90:054014.  https://doi.org/10.1103/PhysRevD.90.054014, arXiv:1408.1627
  7. 7.
    Gripaios B, Nardecchia M, Renner SA (2015) Composite leptoquarks and anomalies in \(B\)-meson decays. JHEP 05:006.  https://doi.org/10.1007/JHEP05(2015)006, arXiv:1412.1791
  8. 8.
    Crivellin A, D’Ambrosio G, Heeck J (2015) Explaining \(h\rightarrow \mu ^\pm \tau ^\mp \), \(B\rightarrow K^* \mu ^+\mu ^-\) and \(B\rightarrow K \mu ^+\mu ^-/B\rightarrow K e^+e^-\) in a two-Higgs-doublet model with gauged \(L_\mu -L_\tau \). Phys Rev Lett 114:151801.  https://doi.org/10.1103/PhysRevLett.114.151801, arXiv:1501.00993
  9. 9.
    de Medeiros Varzielas I, Hiller G (2015) Clues for flavor from rare lepton and quark decays. JHEP 06:072.  https://doi.org/10.1007/JHEP06(2015)072, arXiv:1503.01084
  10. 10.
    Crivellin A, D’Ambrosio G, Heeck J (2015) Addressing the LHC flavor anomalies with horizontal gauge symmetries. Phys Rev D 91:075006.  https://doi.org/10.1103/PhysRevD.91.075006, arXiv:1503.03477
  11. 11.
    Be\(\check{{\rm {c}}}\)irevi\(\acute{{\rm {c}}}\) D, Fajfer S, Ko\(\check{{\rm {s}}}\)nik N (2015) Lepton flavor nonuniversality in \(b \rightarrow s \mu ^+ \mu ^-\) processes. Phys Rev D 92:014016.  https://doi.org/10.1103/PhysRevD.92.014016, arXiv:1503.09024
  12. 12.
    Celis A, Fuentes-Martin J, Jung M, Ser\(\hat{{\rm {o}}}\)dio H (2015) Family nonuniversal \(Z^\prime \) models with protected flavor-changing interactions. Phys Rev D 92:015007.  https://doi.org/10.1103/PhysRevD.92.015007, arXiv:1505.03079
  13. 13.
    Alonso R, Grinstein B, Martin Camalich J (2015) Lepton universality violation and lepton flavor conservation in \(B\)-meson decays. JHEP 10:184.  https://doi.org/10.1007/JHEP10(2015)184, arXiv:1505.05164
  14. 14.
    Belanger G, Delaunay C, Westhoff S (2015) A dark matter relic from muon anomalies. Phys Rev D 92:055021.  https://doi.org/10.1103/PhysRevD.92.055021, arXiv:1507.06660
  15. 15.
    Falkowski A, Nardecchia M, Ziegler R (2015) Lepton flavor non-universality in B-meson decays from a U(2) flavor model. JHEP 11:173.  https://doi.org/10.1007/JHEP11(2015)173, arXiv:1509.01249
  16. 16.
    Gripaios B, Nardecchia M, Renner SA (2016) Linear flavour violation and anomalies in B physics. JHEP 06:083.  https://doi.org/10.1007/JHEP06(2016)083, arXiv:1509.05020
  17. 17.
    Bauer M, Neubert M (2016) Minimal Leptoquark explanation for the R\(_{D^{(*)}}\), R\(_K\), and \((g-2)_g\) anomalies. Phys Rev Lett 116:141802.  https://doi.org/10.1103/PhysRevLett.116.141802, arXiv:1511.01900
  18. 18.
    Fajfer S, Ko\(\check{{\rm {s}}}\)nik N (2016) Vector leptoquark resolution of \(R_K\) and \(R_{D^{(*)}}\) puzzles. Phys Lett B 755:270–274.  https://doi.org/10.1016/j.physletb.2016.02.018, arXiv:1511.06024ADSCrossRefGoogle Scholar
  19. 19.
    Boucenna SM, Celis A, Fuentes-Martin J, Vicente A, Virto J (2016) Phenomenology of an \(SU(2) \times SU(2) \times U(1)\) model with lepton-flavour non-universality. JHEP 12:059.  https://doi.org/10.1007/JHEP12(2016)059, arXiv:1608.01349
  20. 20.
    Arnan P, Hofer L, Mescia F, Crivellin A (2017) Loop effects of heavy new scalars and fermions in \(b\rightarrow s\mu ^+\mu ^-\). JHEP 04:043.  https://doi.org/10.1007/JHEP04(2017)043, arXiv:1608.07832
  21. 21.
    Be\(\check{{\rm {c}}}\)irevi\(\acute{{\rm {c}}}\) D, Fajfer S, Ko\(\check{{\rm {s}}}\)nik N, Sumensari O (2016) Leptoquark model to explain the \(B\)-physics anomalies, \(R_K\) and \(R_D\). Phys Rev D 94:115021.  https://doi.org/10.1103/PhysRevD.94.115021, arXiv:1608.08501
  22. 22.
    Crivellin A, Fuentes-Martin J, Greljo A, Isidori G (2017) Lepton flavor non-universality in B decays from dynamical Yukawas. Phys Lett B 766:77–85.  https://doi.org/10.1016/j.physletb.2016.12.057, arXiv:1611.02703ADSCrossRefGoogle Scholar
  23. 23.
    Garcia IG (2017) LHCb anomalies from a natural perspective. JHEP 03:040.  https://doi.org/10.1007/JHEP03(2017)040, arXiv:1611.03507
  24. 24.
    Cline JM (2018) \(B\) decay anomalies and dark matter from vectorlike confinement. Phys Rev D 97:015013.  https://doi.org/10.1103/PhysRevD.97.015013, arXiv:1710.02140
  25. 25.
    Baek S (2018) Dark matter contribution to \(b\rightarrow s \mu ^+ \mu ^-\) anomaly in local \(U(1)_{L_\mu -L_\tau }\) model. Phys Lett B 781:376–382.  https://doi.org/10.1016/j.physletb.2018.04.012, arXiv:1707.04573ADSCrossRefGoogle Scholar
  26. 26.
    Cline JM, Camalich JM (2017) \(B\) decay anomalies from nonabelian local horizontal symmetry. Phys Rev D 96:055036.  https://doi.org/10.1103/PhysRevD.96.055036, arXiv:1706.08510
  27. 27.
    Kawamura J, Okawa S, Omura Y (2017) Interplay between the \(b \rightarrow s\ell \ell \) anomalies and dark matter physics. Phys Rev D 96:075041.  https://doi.org/10.1103/PhysRevD.96.075041, arXiv:1706.04344
  28. 28.
    Di Chiara S, Fowlie A, Fraser S, Marzo C, Marzola L, Raidal M et al (2017) Minimal flavor-changing \(Z^{\prime }\) models and muon \(g-2\) after the \(R_{K^*}\) measurement. Nucl Phys B 923:245–257.  https://doi.org/10.1016/j.nuclphysb.2017.08.003, arXiv:1704.06200ADSzbMATHCrossRefGoogle Scholar
  29. 29.
    Kamenik JF, Soreq Y, Zupan J (2018) Lepton flavor universality violation without new sources of quark flavor violation. Phys Rev D 97:035002.  https://doi.org/10.1103/PhysRevD.97.035002, arXiv:1704.06005
  30. 30.
    Crivellin A, Mller D, Ota T (2017) Simultaneous explanation of R(D\(^{(*)}\)) and \(b \rightarrow s \mu ^{+} \mu ^{-}\): the last scalar leptoquarks standing. JHEP 09:040.  https://doi.org/10.1007/JHEP09(2017)040, arXiv:1703.09226
  31. 31.
    Ko P, Omura Y, Shigekami Y, Yu C (2017) LHCb anomaly and B physics in flavored \(Z^\prime \) models with flavored Higgs doublets. Phys Rev D 95:115040.  https://doi.org/10.1103/PhysRevD.95.115040, arXiv:1702.08666
  32. 32.
    Ko P, Nomura T, Okada H (2017) Explaining \(B\rightarrow K^{(*)}\ell ^+ \ell ^-\) anomaly by radiatively induced coupling in \(U(1)_{\mu -\tau }\) gauge symmetry. Phys Rev D 95:111701.  https://doi.org/10.1103/PhysRevD.95.111701, arXiv:1702.02699
  33. 33.
    Di Luzio L, Greljo A, Nardecchia M (2017) Gauge leptoquark as the origin of B-physics anomalies. Phys Rev D 96:115011.  https://doi.org/10.1103/PhysRevD.96.115011, arXiv:1708.08450
  34. 34.
    ATLAS collaboration, Aad G et al (2016) Measurement of the CP-violating phase \(\phi _s\) and the \(B^0_s\) meson decay width difference with \(B^0_s \rightarrow J/\psi \phi \) decays in ATLAS. JHEP 08:147.  https://doi.org/10.1007/JHEP08(2016)147, arXiv:1601.03297
  35. 35.
    CMS collaboration, Khachatryan V et al (2016) Measurement of the CP-violating weak phase \(\phi _s\) and the decay width difference \(\Delta \Gamma _s\) using the B\(_s^0 \rightarrow J/\psi \phi \)(1020) decay channel in pp collisions at \(\sqrt{s}=\) 8 TeV. Phys Lett B 757:97–120.  https://doi.org/10.1016/j.physletb.2016.03.046, arXiv:1507.07527ADSCrossRefGoogle Scholar
  36. 36.
    LHCb collaboration, Aaij R et al (2015) Precision measurement of \(CP\) violation in \(B_s^0 \rightarrow J/\psi K^+K^-\) decays. Phys Rev Lett 114:041801.  https://doi.org/10.1103/PhysRevLett.114.041801, arXiv:1411.3104
  37. 37.
    LHCb collaboration, Aaij R et al (2014) Measurements of the \(B^+, B^0, B^0_s\) meson and \(\Lambda ^0_b\) baryon lifetimes. JHEP 04:114.  https://doi.org/10.1007/JHEP04(2014)114, arXiv:1402.2554
  38. 38.
    Bobeth C, Haisch U, Lenz A, Pecjak B, Tetlalmatzi-Xolocotzi G (2014) On new physics in \(\Delta \Gamma _{d}\). JHEP 06:040.  https://doi.org/10.1007/JHEP06(2014)040, arXiv:1404.2531
  39. 39.
    Bobeth C, Gorbahn M, Vickers S (2015) Weak annihilation and new physics in charmless \(B \rightarrow M M\) decays. Eur Phys J C 75:340.  https://doi.org/10.1140/epjc/s10052-015-3535-1, arXiv:1409.3252
  40. 40.
    Brod J, Lenz A, Tetlalmatzi-Xolocotzi G, Wiebusch M (2015) New physics effects in tree-level decays and the precision in the determination of the quark mixing angle \(\gamma \), Phys Rev D 92:033002.  https://doi.org/10.1103/PhysRevD.92.033002, arXiv:1412.1446
  41. 41.
    Bauer CW, Dunn ND (2011) Comment on new physics contributions to \(\Gamma _{12}^s\). Phys Lett B 696:362–366.  https://doi.org/10.1016/j.physletb.2010.12.039, arXiv:1006.1629ADSCrossRefGoogle Scholar
  42. 42.
    Lyon J, Zwicky R (2014) Resonances gone topsy turvy-the charm of QCD or new physics in \(b \rightarrow s \ell ^+ \ell ^-\)?. arXiv:1406.0566
  43. 43.
    He XG, Tandean J, Valencia G (2009) Probing new physics in charm couplings with FCNC. Phys Rev D 80:035021.  https://doi.org/10.1103/PhysRevD.80.035021, arXiv:0904.2301
  44. 44.
    CLEO collaboration, Chen S et al (2001) Branching fraction and photon energy spectrum for \(b \rightarrow s \gamma \). Phys Rev Lett 87:251807.  https://doi.org/10.1103/PhysRevLett.87.251807, arXiv:hep-ex/0108032
  45. 45.
    Belle collaboration, Abe K et al (2001) A measurement of the branching fraction for the inclusive \(B \rightarrow X(s) \gamma \) decays with BELLE. Phys Lett B 511:151–158. https://doi.org/10.1016/S0370-2693(01)00626-8, arXiv:hep-ex/0103042ADSCrossRefGoogle Scholar
  46. 46.
    BaBar collaboration, Aubert B et al (2008) Measurement of the \(B \rightarrow X_s \gamma \) branching fraction and photon energy spectrum using the recoil method. Phys Rev D 77:051103.  https://doi.org/10.1103/PhysRevD.77.051103, arXiv:0711.4889
  47. 47.
    Belle collaboration, Limosani A et al (2009) Measurement of inclusive radiative B-meson decays with a photon energy threshold of 1.7-GeV. Phys Rev Lett 103:241801.  https://doi.org/10.1103/PhysRevLett.103.241801, arXiv:0907.1384
  48. 48.
    BaBar collaboration, Lees JP et al (2012) Precision measurement of the \(B \rightarrow X_s \gamma \) photon energy spectrum, branching fraction, and direct CP asymmetry \(A_{CP}(B \rightarrow X_{s+d}\gamma )\). Phys Rev Lett 109:191801. https://doi.org/10.1103/PhysRevLett.109.191801, arXiv:1207.2690
  49. 49.
    BaBar collaboration, Lees JP et al (2012) Measurement of B (\(B\rightarrow X_s \gamma \)), the \(B\rightarrow X_s \gamma \) photon energy spectrum, and the direct CP asymmetry in \(B\rightarrow X_{s+d} \gamma \) decays. Phys Rev D 86:112008.  https://doi.org/10.1103/PhysRevD.86.112008, arXiv:1207.5772
  50. 50.
    BaBar collaboration, Lees JP et al (2012) Exclusive measurements of \(b \rightarrow s\gamma \) transition rate and photon energy spectrum. Phys Rev D 86:052012.  https://doi.org/10.1103/PhysRevD.86.052012, arXiv:1207.2520
  51. 51.
    Belle collaboration, Saito T et al (2015) Measurement of the \(\bar{B} \rightarrow X_s \gamma \) branching fraction with a sum of exclusive decays. Phys Rev D 91:052004.  https://doi.org/10.1103/PhysRevD.91.052004, arXiv:1411.7198
  52. 52.
    Buras AJ, Misiak M, Urban J (2000) Two loop QCD anomalous dimensions of flavor changing four quark operators within and beyond the standard model. Nucl Phys B 586:397–426.  https://doi.org/10.1016/S0550-3213(00)00437-5, arXiv:hep-ph/0005183ADSCrossRefGoogle Scholar
  53. 53.
    Aoki S et al (2014) Review of lattice results concerning low-energy particle physics. Eur Phys J C 74:2890.  https://doi.org/10.1140/epjc/s10052-014-2890-7, arXiv:1310.8555
  54. 54.
    Beneke M, Buchalla G, Dunietz I (1996) Width difference in the \(B_s-\bar{B_s}\) system. Phys Rev D 54:4419–4431.  https://doi.org/10.1103/PhysRevD.54.4419,  https://doi.org/10.1103/PhysRevD.83.119902, arXiv:hep-ph/9605259
  55. 55.
    Dighe AS, Hurth T, Kim CS, Yoshikawa T (2002) Measurement of the lifetime difference of \(B_d\) mesons: possible and worthwhile? Nucl Phys B 624:377–404.  https://doi.org/10.1016/S0550-3213(01)00655-1, arXiv:hep-ph/0109088ADSCrossRefGoogle Scholar
  56. 56.
    Beneke M, Buchalla G, Greub C, Lenz A, Nierste U (1999) Next-to-leading order QCD corrections to the lifetime difference of \(B_s\) mesons. Phys Lett B 459:631–640.  https://doi.org/10.1016/S0370-2693(99)00684-X, arXiv:hep-ph/9808385ADSCrossRefGoogle Scholar
  57. 57.
    Beneke M, Buchalla G, Lenz A, Nierste U (2003) CP asymmetry in flavor specific B decays beyond leading logarithms. Phys Lett B 576:173–183.  https://doi.org/10.1016/j.physletb.2003.09.089, arXiv:hep-ph/0307344ADSCrossRefGoogle Scholar
  58. 58.
    Ciuchini M, Franco E, Lubicz V, Mescia F, Tarantino C (2003) Lifetime differences and CP violation parameters of neutral B mesons at the next-to-leading order in QCD. JHEP 08:031.  https://doi.org/10.1088/1126-6708/2003/08/031, arXiv:hep-ph/0308029CrossRefGoogle Scholar
  59. 59.
    Lenz A, Nierste U (2007) Theoretical update of \(B_s - \bar{B}_s\) mixing. JHEP 06:072.  https://doi.org/10.1088/1126-6708/2007/06/072, arXiv:hep-ph/0612167CrossRefGoogle Scholar
  60. 60.
    Franco E, Lubicz V, Mescia F, Tarantino C (2002) Lifetime ratios of beauty hadrons at the next-to-leading order in QCD. Nucl Phys B 633:212–236.  https://doi.org/10.1016/S0550-3213(02)00262-6, arXiv:hep-ph/0203089ADSCrossRefGoogle Scholar
  61. 61.
    HFLAV collaboration (2016) B lifetime and oscillation parameters. Spring 2016. http://www.slac.stanford.edu/xorg/hflav/osc/spring_2016/
  62. 62.
    HFLAV collaboration (2017) B lifetime and oscillation parameters. Summer 2017. http://www.slac.stanford.edu/xorg/hflav/osc/summer_2017/
  63. 63.
    Chetyrkin KG, Misiak M, Munz M (1997) Weak radiative B meson decay beyond leading logarithms. Phys Lett B 400:206–219.  https://doi.org/10.1016/S0370-2693(97)00324-9, arXiv:hep-ph/9612313ADSCrossRefGoogle Scholar
  64. 64.
    Gaillard MK, Lee BW (1974) \(\Delta I = 1/2\) rule for nonleptonic decays in asymptotically free field theories. Phys Rev Lett 33:108.  https://doi.org/10.1103/PhysRevLett.33.108ADSCrossRefGoogle Scholar
  65. 65.
    Altarelli G, Maiani L (1974) Octet enhancement of nonleptonic weak interactions in asymptotically free gauge theories. Phys Lett B 52:351–354.  https://doi.org/10.1016/0370-2693(74)90060-4ADSCrossRefGoogle Scholar
  66. 66.
    Gilman FJ, Wise MB (1979) Effective Hamiltonian for \(\Delta S = 1\) weak nonleptonic decays in the six quark model. Phys Rev D 20:2392.  https://doi.org/10.1103/PhysRevD.20.2392ADSCrossRefGoogle Scholar
  67. 67.
    Shifman MA, Vainshtein AI, Zakharov VI (1977) Nonleptonic decays of K mesons and hyperons. Sov Phys JETP 45:670Google Scholar
  68. 68.
    Gilman FJ, Wise MB (1980) \(K \rightarrow \pi e^+ e^-\) in the six quark model. Phys Rev D 21:3150.  https://doi.org/10.1103/PhysRevD.21.3150ADSCrossRefGoogle Scholar
  69. 69.
    Guberina B, Peccei RD (1980) Quantum chromodynamic effects and CP violation in the Kobayashi-Maskawa model. Nucl Phys B 163:289–311.  https://doi.org/10.1016/0550-3213(80)90404-6ADSCrossRefGoogle Scholar
  70. 70.
    Ciuchini M, Franco E, Martinelli G, Reina L, Silvestrini L (1993) Scheme independence of the effective Hamiltonian for \(b \rightarrow s \gamma \) and \(b \rightarrow s g\) decays. Phys Lett B 316:127–136.  https://doi.org/10.1016/0370-2693(93)90668-8, arXiv:hep-ph/9307364ADSCrossRefGoogle Scholar
  71. 71.
    Ciuchini M, Franco E, Martinelli G, Reina L, Silvestrini L (1994) \(b \rightarrow s \gamma \) and \(b \rightarrow s g\): a theoretical reappraisal. Phys Lett B 334:137–144.  https://doi.org/10.1016/0370-2693(94)90602-5, arXiv:hep-ph/9406239ADSCrossRefGoogle Scholar
  72. 72.
    Ciuchini M, Franco E, Reina L, Silvestrini L (1994) Leading order QCD corrections to \(b \rightarrow s \gamma \) and \(b \rightarrow s g\) decays in three regularization schemes. Nucl Phys B 421:41–64.  https://doi.org/10.1016/0550-3213(94)90223-2, arXiv:hep-ph/9311357ADSCrossRefGoogle Scholar
  73. 73.
    Bertolini S, Borzumati F, Masiero A (1987) QCD enhancement of radiative b decays. Phys Rev Lett 59:180.  https://doi.org/10.1103/PhysRevLett.59.180ADSCrossRefGoogle Scholar
  74. 74.
    Grinstein B, Springer RP, Wise MB (1988) Effective Hamiltonian for weak radiative B meson decay. Phys Lett B 202:138–144.  https://doi.org/10.1016/0370-2693(88)90868-4ADSCrossRefGoogle Scholar
  75. 75.
    Grinstein B, Springer RP, Wise MB (1990) Strong interaction effects in weak radiative \(\bar{B}\) meson decay. Nucl Phys B 339:269–309.  https://doi.org/10.1016/0550-3213(90)90350-MADSCrossRefGoogle Scholar
  76. 76.
    Misiak M (1991) QCD corrected effective Hamiltonian for the \(b \rightarrow s \gamma \) decay. Phys Lett B 269:161–168.  https://doi.org/10.1016/0370-2693(91)91469-CADSCrossRefGoogle Scholar
  77. 77.
    Chetyrkin KG, Misiak M, Munz M (1998) Beta functions and anomalous dimensions up to three loops. Nucl Phys B 518:473–494.  https://doi.org/10.1016/S0550-3213(98)00122-9, arXiv:hep-ph/9711266ADSzbMATHCrossRefGoogle Scholar
  78. 78.
    Misiak M et al (2015) Updated NNLO QCD predictions for the weak radiative B-meson decays. Phys Rev Lett 114:221801.  https://doi.org/10.1103/PhysRevLett.114.221801, arXiv:1503.01789
  79. 79.
  80. 80.
    Hiller G, Kruger F (2004) More model-independent analysis of \(b \rightarrow s\) processes. Phys Rev D 69:074020.  https://doi.org/10.1103/PhysRevD.69.074020, arXiv:hep-ph/0310219
  81. 81.
    LHCb collaboration, Aaij R et al (2014) Test of lepton universality using \(B^{+}\rightarrow K^{+}\ell ^{+}\ell ^{-}\) decays. Phys Rev Lett 113:151601.  https://doi.org/10.1103/PhysRevLett.113.151601, arXiv:1406.6482
  82. 82.
    LHCb collaboration, Aaij R et al (2017) Test of lepton universality with \(B^{0} \rightarrow K^{*0}\ell ^{+}\ell ^{-}\) decays. JHEP 08:055.  https://doi.org/10.1007/JHEP08(2017)055, arXiv:1705.05802
  83. 83.
    LHCb collaboration, Aaij R et al (2018) Measurement of the ratio of branching fractions \(\cal{B}(B_c^+\,\rightarrow \,J/\psi \tau ^+\nu _\tau )\)/\(\cal{B}(B_c^+\,\rightarrow \,J/\psi \mu ^+\nu _\mu )\). Phys Rev Lett 120:121801.  https://doi.org/10.1103/PhysRevLett.120.121801, arXiv:1711.05623
  84. 84.
    Geng LS, Grinstein B, J\(\ddot{{\rm {a}}}\)ger S, Camalich JM, Ren X-L, Shi R-X (2017) Towards the discovery of new physics with lepton-universality ratios of \(b\rightarrow s\ell \ell \) decays. Phys Rev D 96:093006.  https://doi.org/10.1103/PhysRevD.96.093006, arXiv:1704.05446

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di FisicaLa Sapienza, University of RomeRomeItaly

Personalised recommendations