Advertisement

Development of a Hand Rehabilitation Therapy System with Soft Robotic Glove

  • Julio Cesar Cabrera HidalgoEmail author
  • Nathalia Michelle Peralta Vásconez
  • Vladimir Espartaco Robles Bykbaev
  • Ángel Andres Pérez Muñoz
  • Marco Esteban Amaya Pinos
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 972)

Abstract

The major cause of problems with hand motility in adults is due to work accidents, strokes, injuries and work accidents. The emergence of robotic gloves for hand rehabilitation therapy has been developed to assist with rehabilitation treatment. In this scientific paper, a robotic glove prosthesis is designed and developed for use in hand rehabilitation in patients with grip pathologies. There is talk of mechanical design and operation, and the glove is controlled by a mobile application that allows the physiotherapist to enter the settings for the patient or allow an expert system based on 15 rules to do so. The system is capable of generating reports for the patient, the physiotherapist or the caregiver to review. The developed system is portable, lightweight and easy to transport. The validation of the prototype was carried out with adult patients suffering from hemiparesis.

Keywords

Hand rehabilitation Human-systems integration Systems engineering 

References

  1. 1.
    Borboni, A., Mor, M., Fgila, R.: Gloreha—hand robotic rehabilitation: design, mechanical model, and experiments (2016). asmedigitalcollection.asme.orgCrossRefGoogle Scholar
  2. 2.
    Henao, G., Arango, J., Rendon, J.F.G., Velasquez, J.B., Tellez, C.H.O.: Rehabilitación temprana de fracturas de mano con órtesis robóticas. Reporte de caso. Elsevier (2018)Google Scholar
  3. 3.
    Chu, C.-Y., Patterson, R.M.: Soft robotic devices for hand rehabilitation and assistance: a narrative review. J. Neuroeng. Rehabil. 15(1), 9 (2018)CrossRefGoogle Scholar
  4. 4.
    Polygerinos, P., Galloway, K.C., Savage, E., Herman, M., O’Donnell, K., Walsh, C.J.: Soft robotic glove for hand rehabilitation and task specific training (2015). ieeexplore.ieee.org
  5. 5.
    Ueki, S., Kawasaki, H., Ito, S., Nishimoto, Y., Abe, M., Aoki, T., Ishigure, Y., Ojika, T., Mouri, T.: Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy (2012). ieeexplore.ieee.orgCrossRefGoogle Scholar
  6. 6.
    Kutner, N., Zhang, R., Butler, A.J., Wolf, S.L., Alberts, J.L.: Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial (2010). academic.oup.com
  7. 7.
    Abdallah, I.B., Bouteraa, Y., Rekik, C.: Design and development of 3D printed myoelectric robotic exoskeleton for hand rehabilitation. Int. J. Smart Sens. Intell. Syst. 10(2), 341–366 (2017)Google Scholar
  8. 8.
    Cempini, M., Cortese, M., Vitiello, A.: A powered finger–thumb wearable hand exoskeleton with self-aligning joint axes (2015). ieeexplore.ieee.org
  9. 9.
    Heo, P., Gu, G.M., Lee, S., Rhee, K., Kim, J.: Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int. J. Precis. Eng. Manuf. 13(5), 807–824 (2012)CrossRefGoogle Scholar
  10. 10.
    Jones, C., Wang, F., Morrison, R., Sarkar, N., Kamper, D.G.: Design and development of the cable actuated finger exoskeleton for hand rehabilitation following stroke (2014). ieeexplore.ieee.orgCrossRefGoogle Scholar
  11. 11.
    Polygerinos, P., Wang, Z., Galloway, K., Wood, R.J., Walsh, C.J.: Soft robotic glove for combined assistance and at-home rehabilitation. Elsevier (2015)Google Scholar
  12. 12.
    Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., Leonhardt, S.: A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 11(1), 3 (2014)CrossRefGoogle Scholar
  13. 13.
    Avila Chaurand, R., Prado León, L.R., González Muñoz, E.L., and Universidad de Guadalajara: Centro de Investigaciones en Ergonomía., Dimensiones antropométricas de población latinoamericana. Universidad de Guadalajara, Centro Universitario de Arte, Arquitectura y Diseño, División de Tecnología y Procesos, Departamento de Producción y Desarrollo, Centro de Investigaciones en Ergonomía (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Julio Cesar Cabrera Hidalgo
    • 1
    Email author
  • Nathalia Michelle Peralta Vásconez
    • 1
  • Vladimir Espartaco Robles Bykbaev
    • 1
  • Ángel Andres Pérez Muñoz
    • 1
  • Marco Esteban Amaya Pinos
    • 2
  1. 1.GI-IATAUniversidad Politécnica SalesianaCuencaEcuador
  2. 2.Mechanical EngineeringUniversidad Politécnica SalesianaCuencaEcuador

Personalised recommendations