Advertisement

Human Factors in All-Terrain Wheelchair Design for Rural Population

  • Paula Chacon-CifuentesEmail author
  • A. A. Zuleta
  • Gustavo Sevilla
  • Andres Valencia-Escobar
  • Esteban Correa-Bedoya
  • Felix Echeverria-Echeverria
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 972)

Abstract

Considering the geography, the public infrastructure and the products available in Colombia, there was identified an insufficiency in the supply of wheelchairs appropriated for the tough conditions of rural areas. In response, an all-terrain, three-wheeled and leveraged wheelchair was designed, using the user-centered design approach. The wheelchair was adapted to the anthropometric and anatomical characteristics of its users and considered arms biomechanics for the design of leveraged driving system. In addition, it was proposed the use of magnesium alloys to reducing the weight of the wheelchair frame, which helps to reduce the effort thus contributing to the preservation of upper limbs. The wheelchair was co-designed involving potential users in the design process. The digital model suggests a weight reduction of 75% to 55% compared to commercial models and shows adequate structural behavior. Currently, a functional prototype is being manufactured, which will be subjected to technical and usability tests.

Keywords

User-centered design Mobility Biomechanics Product design Assistive technology 

Notes

Acknowledgments

The authors are grateful to “Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS)” of the Colombian Government (Grant 1115745-58322), “Centro de Investigación para el Desarrollo y la Innovación (CIDI)” from the Universidad Pontificia Bolivariana through UPB-Innova Rad: 747B-03/17-35, Universidad de Antioquia, SENA and Universidad de Medellín.

Funding

Departamento Administrativo de Ciencia, Tecnología e Innovación en Colombia (COLCIENCIAS), grant 1115745-58322.

References

  1. 1.
    Trujillo Suárez, M., Aguilar, J.J., Neira, C.: Los métodos más característicos del diseño centrado en el usuario -DCU-, adaptados para el desarrollo de productos materiales. Iconofacto. 12, 215–236 (2016)CrossRefGoogle Scholar
  2. 2.
    World Health Organization: Pautas para el suministro de sillas de ruedas manuales en entornos de menores recursos. Pautas para el Suminist. sillas ruedas manuales, p. 137 (2008)Google Scholar
  3. 3.
    World Health Organization: Joint position paper on the provision of mobility devices in less-resourced settings: a step towards implementation of the Convention on the Rights of Persons with Disabilities (CRPD) related to personal mobility (2011). https://www.who.int/disabilities/publications/technology/jpp_final.pdf
  4. 4.
    Winter, A.G.: Stakeholder and constraint-driven innovation of a novel, lever-propelled, all-terrain wheelchair. In: Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2013, Portland, Oregon, USA (2013)Google Scholar
  5. 5.
    Rispin, K., Wee, J.: Comparison between performances of three types of manual wheelchairs often distributed in low-resource settings. Disabil. Rehabil. Assist. Technol. 10, 316–322 (2015)CrossRefGoogle Scholar
  6. 6.
    Berrio-Betancur, L.F., Echeverry-Rendón, M., Correa-Bedoya, E., Zuleta-Gil, A.A., Robledo-Restrepo, S.M., Castaño-Gonzalez, J.G., Echeverría-Echeverríaa, F.: Development of the magnesium alloy industry in Colombia - an opportunity | Desarrollo de la industria de aleaciones de magnesio en Colombia - una oportunidad. DYNA, p. 84 (2017)Google Scholar
  7. 7.
    de Groot, S., Vegter, R.J.K., van der Woude, L.H.V.: Effect of wheelchair mass, tire type and tire pressure on physical strain and wheelchair propulsion technique. Med. Eng. Phys. 35, 1476–1482 (2013)CrossRefGoogle Scholar
  8. 8.
    Liu, H., Cooper, R.A., Pearlman, J., Connor, S.: Evaluation of titanium ultralight manual wheelchairs using ANSI/RESNA standards. J. Rehabil. Res. Dev. 45, 1–20 (2008)CrossRefGoogle Scholar
  9. 9.
    Singh, S.K., Arya, K.N., Nagar, R.: To compare the physiological effects of standard and light weight wheelchair design during propulsion by persons with spinal cord injury (SCI). Indian J. Occup. Ther. 39, 73–78 (2008)Google Scholar
  10. 10.
    Medola, F.O., Elui, V.M.C., Santana, C.D.S., Fortulan, C.A.: Aspects of manual wheelchair configuration affecting mobility: a review. J. Phys. Ther. Sci. 26, 313–318 (2014)CrossRefGoogle Scholar
  11. 11.
    Sevilla Cadavid, G.A., Valencia-Escobar, A., Velázquez Gómez, J.: Estudio de caso sobre el diseño de Proaid E: silla de ruedas neurológica para niños. Iconofacto 13, 128–143 (2017)Google Scholar
  12. 12.
    Moruno, P., Romero, D.: Actividades de la Vida Diaria. An. Psicol. 23, 264–271 (2007)Google Scholar
  13. 13.
    Cadavid, G.S., Valencia-Escobar, A., Gómez, J.V.: Proaid E. low cost neurological wheelchair design. In: Rebelo, F., Soares, M. (eds.) Advances in Ergonomics in Design. Advances in Intelligent Systems and Computing, pp. 677–687. Springer, Cham (2016)CrossRefGoogle Scholar
  14. 14.
    Motivation: Motivation Rough Terrain. https://www.motivation.org.uk/rough-terrain%0A
  15. 15.
  16. 16.
  17. 17.
  18. 18.
    Lasher Sport: ATB-Ultimate Wheelchair. http://www.lashersport.com/pages/chairs/atbu/atbu.html%0A
  19. 19.
    Invacare: Invacare Top End Crossfire All Terrain. http://www.topendwheelchair.com/product/crossfire-all-terrain-wheelchair/
  20. 20.
    Trekinetic: Trekinetic K-2. http://www.trekinetic.com/K2.php%0A
  21. 21.
    Lasher Sport: BT-ATB (All Terrain Beast). http://www.lashersport.com/pages/chairs/btatb/btatb.html%0A
  22. 22.
  23. 23.
    RGK: RGK Tiga TX I Made to Measure All Terrain Wheelchair. https://www.rgklife.com/wheelchairs/daily-wheelchairs/all-terrain-wheelchair.html
  24. 24.
    Invacare: Invacare Top End Crossfire All Terrain. http://www.topendwheelchair.com/product/crossfire-all-terrain-wheelchair
  25. 25.
    Colours Wheelchair: Saber - Colours Wheelchair. http://colourswheelchair.com/saber/
  26. 26.
    RGK: RGK Octane _ Made to Measure Rigid Ultra Lightweight Wheelchair. https://www.rgklife.com/wheelchairs/daily-wheelchairs/rigid-ultra-lightweight-wheelchair.html
  27. 27.
  28. 28.
    Colours Wheelchair: Zephyr - Colours Wheelchair. http://colourswheelchair.com/zepher/
  29. 29.
    Sunrise Medical: Quickie Q7 NextGen Adjustable Ultralight Wheelchairr. http://www.1800wheelchair.com/product/quickie-q7-adjustable-ultralight-wheelchair/
  30. 30.
  31. 31.
  32. 32.
    1800wheelchair: TiLite ZRA Series 2 Wheelchair. http://www.1800wheelchair.com/product/tilite-zra-series-2-wheelchair/
  33. 33.
    Panthera, A.B.: Panthera X. http://www.panthera.se/en/produkt_x.html
  34. 34.
    Perdios, A., Sawatzky, B.J., Sheel, A.W.: Effects of camber on wheeling efficiency in the experienced and inexperienced wheelchair user. J. Rehabil. Res. Dev. 44, 459–466 (2007)CrossRefGoogle Scholar
  35. 35.
    International Organization for Standardization: International Standard ISO 7176-8 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Paula Chacon-Cifuentes
    • 1
    • 3
    Email author
  • A. A. Zuleta
    • 1
  • Gustavo Sevilla
    • 1
  • Andres Valencia-Escobar
    • 1
  • Esteban Correa-Bedoya
    • 2
  • Felix Echeverria-Echeverria
    • 3
  1. 1.Grupo de Investigación de Estudios en Diseño GED, Facultad de Diseño IndustrialUniversidad Pontificia BolivarianaMedellínColombia
  2. 2.Grupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de IngenieríasUniversidad de MedellínMedellínColombia
  3. 3.Centro de Investigación, Innovación y Desarrollo de Materiales (CIDEMAT), Facultad de IngenieríaUniversidad de Antioquia UdeAMedellínColombia

Personalised recommendations