Advertisement

Design of Health Control Applied to Elderly People’s Resistance Exercise Device

  • Tang-Yung Hsu
  • Hsi-Jen Chen
  • Fong-Gong Wu
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 972)

Abstract

This project is to study the relationship between blood circulation and muscle movement and to understand the metabolic function between cells. To help the middle-age and elderly improve blood circulation, prevent Vascular lesion and promote blood sugar control. This study uses resistance movements to help middle-aged and elderly people to increase their muscle fibers, improve blood circulation and metabolism, and assist in the blood sugar control. Then it can improve body function, reduce the cause of chronic disease formation, and prevent chronic diseases.

The ultimate goal of this project is to design an interaction sport advice aids in lower limbs sport. Mainly to train muscles to achieve the effect of converting blood sugar into muscles become energy, thereby achieving glycemic control. In addition, muscle movement promotes blood circulation throughout the body, burns excess calories, and prevents atherosclerosis caused by endothelial cell dysfunction.

Keywords

Elderly sport Resistance training Blood sugar 

References

  1. 1.
    Ministry of Health and Welfare (2018). https://dep.mohw.gov.tw/DOS/lp-1720-113-xCat-2.html
  2. 2.
    He, J., Kelley, D.E.: Muscle glycogen content in type 2 diabetes mellitus. Am. J. Physiol.-Endocrinol. Metab. 287(5), E1002–E1007 (2004)CrossRefGoogle Scholar
  3. 3.
    Obici, S., Rossetti, L.: Minireview: nutrient sensing and the regulation of insulin action and energy balance. Endocrinology 144(12), 5172–5178 (2003)CrossRefGoogle Scholar
  4. 4.
    Sawada, N., Jiang, A., Takizawa, F., Safdar, A., Manika, A., Tesmenitsky, Y., Kang, K.T., Bischoff, J., Kalwa, H., Sartoretto, J.L., Kamei, Y.: Endothelial PGC-1α mediates vascular dysfunction in diabetes. Cell Metab. 19(2), 246–258 (2014)CrossRefGoogle Scholar
  5. 5.
    Beckman, J.A., Creager, M.A., Libby, P.: Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287(19), 2570–2581 (2002)CrossRefGoogle Scholar
  6. 6.
    Kubota, T., Kubota, N., Kumagai, H., Yamaguchi, S., Kozono, H., Takahashi, T., Inoue, M., Itoh, S., Takamoto, I., Sasako, T., Kumagai, K.: Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab. 13(3), 294–307 (2011)CrossRefGoogle Scholar
  7. 7.
    Daiber, A., Steven, S., Weber, A., Shuvaev, V.V., Muzykantov, V.R., Laher, I., Li, H., Lamas, S., Münzel, T.: Targeting vascular (endothelial) dysfunction. Br. J. Pharmacol. 174(12), 1591–1619 (2017)CrossRefGoogle Scholar
  8. 8.
    Huang, S.: Tang niao bing huan zhe de yun dong chu fang yu liao xiao. Hong xinwen hua shi ye you xian gong si, Taibei Shi, pp. 44, 50–51, 15–18 (2006). ISBN 9789579411585Google Scholar
  9. 9.
    Smith, A.C., Mullen, K.L., Junkin, K.A., Nickerson, J., Chabowski, A., Bonen, A., Dyck, D.J.: Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the progression of high-fat diet-induced hyperglycemia. Am. J. Physiol.-Endocrinol. Metab. 293(1), E172–E181 (2007)CrossRefGoogle Scholar
  10. 10.
    Guo, Z.: Intramyocellular lipid kinetics and insulin resistance. Lipids Health Dis. 6(1), 18 (2007).  https://doi.org/10.1186/1476-511x-6-18MathSciNetCrossRefGoogle Scholar
  11. 11.
    Reid, K.F., Callahan, D.M., Carabello, R.J., Phillips, E.M., Frontera, W.R., Fielding, R.A.: Lower extremity power training in elderly subjects with mobility limitations: a randomized controlled trial. Aging Clin. Exp. Res. 20(4), 337–343 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tang-Yung Hsu
    • 1
  • Hsi-Jen Chen
    • 1
  • Fong-Gong Wu
    • 1
  1. 1.Tainan CityTaiwan (R.O.C.)

Personalised recommendations