Evaluation of a Multilingual Workspace to Practice Math for Visually Impaired Students

  • Islam Elkabani
  • Lama HamandiEmail author
  • Rached Zantout
  • Salma Ghali
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 972)


An interactive workspace that enables learning and practicing Algebra for visually impaired students using Arabic or English was built. In this paper, the experiments conducted to evaluate the efficiency, effectiveness and user satisfaction of the proposed system are described. Visually impaired students from upper elementary and middle school in Lebanon participated in testing the implementation of the workspace. The effectiveness of the system is much better than that of other existing systems. All students were able to solve all exercises correctly using the hints suggested by the system in learning mode. In addition, a 40% reduction in learning time was recorded compared to using already existing systems with a sighted person giving the student hints. Moreover, using the system, students were able to learn and practice operations they were incapable of performing using traditional tools.


Assistive technology Visually impaired students Multilingual mathematical manipulation Usability evaluation 


  1. 1.
    DAESN Association: في دراسة حديثة لمنظمة الصحة العالمية.
  2. 2.
    October magazine: في ظل ثورة المعلومات.
  3. 3.
    Pontelli, E., Gupta, G., Karshmer, A.: Mathematics Accessibility. Universal Access Handbook. CRC Press, Boca Raton (2009)Google Scholar
  4. 4.
    ElKabani, I., Zantout, R.: A framework for helping the visually impaired learn and practice math. In: 5th International Conference on Information and Communication Technology and Accessibility, Marrakech, Morocco (2015)Google Scholar
  5. 5.
    Arabic mathematical notation.
  6. 6.
  7. 7.
    Maths for More: WIRIS editor demo.
  8. 8.
    BraMaNet: Logiciel de traduction des mathématiques en Braille.
  9. 9.
    Karshmer, A.I., Gupta, G., Geiiger, S., Weaver, C.: Reading and writing mathematics: the MAVIS project. In: International Conference on Assistive Technologies, Marina del Rey, CA, pp. 136–143. ACM Press (1998)Google Scholar
  10. 10.
    Gopal, D., Wang, Q., Gupta, G., Cnitnis, S., Guo, H., Karshmer, A.I.: Towards completely automatic backtranslation of Nemeth Braille Code. In: Erlbaum, L. (ed.) HCI International (2007)Google Scholar
  11. 11.
    Edwards, A., McCartney, H., Fogarolo, F.: Lambda: a multimodal approach to making mathematics accessible to blind students. In: Proceedings of the 8th International ACM SIGACCESS Conference on Computers and Accessibility, Portland, Oregon, pp. 48–54. ACM, New York (2006)Google Scholar
  12. 12.
    Raman, T. V.: Audio systems for technical reading, Ph.D. Cornell University (1994)Google Scholar
  13. 13.
    Karshmer, A., Bledsoe, C., Stanley, P.: The architecture of a comprehensive equation browser for the print impaired. In: Miesenberger K., Klaus J., Zagler W.L., Burger, D. (eds.) Computers Helping People with Special Needs, ICCHP 2004. LNCS, vol. 3118, pp. 614–619. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    JAWS for Windows, Freedom Scientific.
  15. 15.
    Gardner, J.: WinTriangle: a scientific word processor for the blind.
  16. 16.
    Abu Doush, I., Pontelli, E.: Building a programmable architecture for non-visual navigation of mathematics: using rules for guiding presentation and switching between modalities. In: Stephanidis, C. (ed.) UAHCI 2009. LNCS, vol. 5616, pp. 3–13. Springer, Heidelber (2009)Google Scholar
  17. 17.
    Ferres, L., Sepulveda, J.: Improving accessibility to mathematical formulas: the Wikipedia math accessor. In: Proceedings of International Cross-Disciplinary Conference on Web Accessibility, New York, NY, USA, Article no. 25 (2011)Google Scholar
  18. 18.
    Alajarmeh, N., Pontelli, E., Son, T.: From “reading” math to “doing” math: a new direction in non-visual math accessibility. In: Stephanidis, C. (ed.) HCII 2011 and UAHCI 2011, Part IV. LNCS, vol. 6768, pp. 501–510. Springer, Heidelberg (2011)Google Scholar
  19. 19.
    Almasri, B., Elkabani, I., Zantout, R.: An interactive workspace for helping the visually impaired learn linear algebra. In: Miesenberger, K., Fels, D., Archambault, D., Penaz, P., Zagler, W. (eds.) ICCHP 2014, Part I. LNCS, vol. 8547, pp. 572–579 (2014)Google Scholar
  20. 20.
    Fajardo-Flores, S., Archambault, D.: A non-visual electronic workspace for learning algebra. In: Miesenberger, K., Karshmer, A., Penaz, P., Zagler, W. (eds.) ICCHP 2012, Part I. LNCS, vol. 7382, pp. 158–165 (2012)Google Scholar
  21. 21.
    Brzoza, P., Maćkowski, M.: Multimodal interface for working with algebra: interaction between the sighted and the non-sighted. In: Miesenberger, K., Fels, D., Archambault, D., Penaz, P., Zagler, W. (eds.) ICCHP 2014, Part I. LNCS, vol. 8547, pp. 606–613 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Islam Elkabani
    • 1
  • Lama Hamandi
    • 2
    Email author
  • Rached Zantout
    • 3
  • Salma Ghali
    • 1
  1. 1.Beirut Arab UniversityBeirutLebanon
  2. 2.American University of BeirutBeirutLebanon
  3. 3.Rafic Hariri UniversityBeirutLebanon

Personalised recommendations