Advertisement

System of Recommendation and Automatic Correction of Web Accessibility Using Artificial Intelligence

  • Paulina MorilloEmail author
  • Diego Chicaiza-Herrera
  • Diego Vallejo-Huanga
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 972)

Abstract

This work presents the development of a Web system that allows the identification, evaluation and automatic correction of Web accessibility barriers associated with multimedia elements. The analysis carried out by the tool takes into account the conformance level A of WCAG 2.0 standard. Web system takes as input the URL of the Web page to be evaluated to connect and send the evaluation request to three Web Content Analysis APIs: OAW, Tenon, and Achecker. The results of the evaluations are sent to the artificial intelligence services of Google, to obtain an adequate description of multimedia items that are not correctly labeled. Finally, the system proposes a holistic automatic correction of the website source code and allows the result to be exported. To test the effectiveness of the tool were evaluated 54 websites, in different sectors such as government, education, finance, etc. The results show an average increase of 2.57% in web accessibility conformance level, reaching a maximum increase of 24%.

Keywords

Artificial intelligence Web accessibility WCAG guidelines Evaluation tool Web sites 

Notes

Acknowledgments

This work was supported by IDEIAGEOCA Research Group of Universidad Politécnica Salesiana in Quito, Ecuador.

References

  1. 1.
    Wille, K., Dumke, R.R., Wille, C.: Measuring the accessability based on web content accessibility guidelines. In: 2016 Joint Conference of the International Workshop on Software Measurement and the International Conference on Software Process and Product Measurement (IWSM-MENSURA). IEEE (2016)Google Scholar
  2. 2.
    Pascual, A., Ribera, M., Granollers, T.: Impact of web accessibility barriers on users with a hearing impairment. Dyna 82(193), 233–240 (2015)CrossRefGoogle Scholar
  3. 3.
    Word Wide Web Consortium (W3C). https://www.w3.org/Consortium/mission
  4. 4.
    Web Accessibility Initiative (WAI). https://www.w3.org/WAI/
  5. 5.
    Introduction to Web Accessibility Web Accessibility Initiative. https://www.w3.org/WAI/fundamentals/accessibility-intro.oster
  6. 6.
    ISO-Information technology. https://www.iso.org/standard/58625.html
  7. 7.
    W3C-Web Content Accessibility Guidelines (WCAG) 2.0. https://www.w3.org/TR/WCAG20/
  8. 8.
    W3C-Web Accessibility Evaluation Tools List. https://www.w3.org/WAI/ER/tools/
  9. 9.
    Timbi-Sisalima, C., et al.: Comparative analysis of online web accessibility evaluation tools (2016)Google Scholar
  10. 10.
    Di Lucca, G.A., Fasolino, A.R., Tramontana, P.: Web site accessibility: identifying and fixing accessibility problems in client page code. In: Seventh IEEE International Symposium on Web Site Evolution. IEEE (2005)Google Scholar
  11. 11.
    Von Ahn, L., et al.: Improving accessibility of the web with a computer game. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM (2006)Google Scholar
  12. 12.
    Bigham, J.P., et al.: WebInSight: making web images accessible. In: Proceedings of the 8th International ACM SIGACCESS Conference on Computers and Accessibility. ACM (2006)Google Scholar
  13. 13.
    Elkabani, I., et al.: Toward better web accessibility. In: 2015 5th International Conference on Information and Communication Technology and Accessibility (ICTA). IEEE (2015)Google Scholar
  14. 14.
    Vigo, M., Brown, J., Conway, V.: Benchmarking web accessibility evaluation tools: measuring the harm of sole reliance on automated tests. In: Proceedings of the 10th International Cross-Disciplinary Conference on Web Accessibility. ACM (2013)Google Scholar
  15. 15.
    Acosta-Vargas, P., et al.: Toward a combined method for evaluation of web accessibility. In: International Conference on Information Theoretic Security. Springer, Cham (2018)CrossRefGoogle Scholar
  16. 16.
    Zambrano, J.H.L., Pico, R.J.M., Cagua, N.V.A.: Metodología para valorar y clasificar herramientas de evaluación de accesibilidad web. e-Ciencias de la Información 8.1 (2018)Google Scholar
  17. 17.
    Dongaonkar, S.U., Vadali, R.S., Dhutadmal, C.: Accessibility analyzer: tool for new adaptations in government web applications to improve accessibility. In: 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA). IEEE (2017)Google Scholar
  18. 18.
    Keysers, D., Renn, M., Breuel, T.M.: Improving accessibility of HTML documents bygenerating image-tags in a proxy. In: Proceedings of the 9th International ACM SIGACCESS Conference on Computers and Accessibility. ACM (2007)Google Scholar
  19. 19.
    Vigo, M., Harper, S.: Real-time detection of navigation problems on the World ‘Wild’ Web. Int. J. Hum Comput Stud. 101, 1–9 (2017)CrossRefGoogle Scholar
  20. 20.
    Ponce, J.P.: Ranking Redes Sociales, Sitios Web y Aplicaciones Móviles Ecuador (2017). http://blog.formaciongerencial.com/ranking-redes-sociales-sitios-web-aplicaciones-moviles-ecuador-2017/
  21. 21.
  22. 22.
    He, R.Y.: Design and implementation of web based on Laravel framework. In: 2014 International Conference on Computer Science and Electronic Technology (ICCSET 2014). Atlantis Press (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Paulina Morillo
    • 1
    Email author
  • Diego Chicaiza-Herrera
    • 2
  • Diego Vallejo-Huanga
    • 1
    • 3
    • 4
  1. 1.IDEIAGEOCA Research GroupUniversidad Politécnica SalesianaQuitoEcuador
  2. 2.Department of Computer ScienceUniversidad Politécnica SalesianaQuitoEcuador
  3. 3.Department of MathematicsUniversidad San Francisco de QuitoQuitoEcuador
  4. 4.Department of Physics and MathematicsUniversidad de las AméricasQuitoEcuador

Personalised recommendations