Advertisement

Contractility

  • Jordan S. Thomas
  • Justin M. DunnEmail author
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Myocardial contractility—often referred to as inotropy—is the inherent capacity of the myocardium to contract independent of loading conditions, that is, preload and afterload (discussed in Chaps.  1 and  2, respectively). Thus, for a given preload and afterload, contractility is a manifestation of all other factors that influence the interactions between contractile proteins. The incorporation of all these factors makes a simple definition of “contractility” difficult, and it is more easily understood through discussions of changes in contractility. Clinically, a change in left ventricular contractility can be defined as a change in the work performed per beat at a constant end-diastolic volume and aortic pressure.

Keywords

Ischemia Dopamine Lactate Pyruvate Norepinephrine 

References

  1. 1.
    Berne RM, Levy MN. Physiology. 5th ed. St. Louis: Mosby; 2004.Google Scholar
  2. 2.
    Berne RM, Levy MN. Physiology. 4th ed. St. Louis: Mosby; 1998.Google Scholar
  3. 3.
    Mohrman DE, Heller LJ. Cardiovascular physiology. 6th ed. London: McGraw-Hill; 2006.Google Scholar
  4. 4.
    Berne RM, Levy MN. Cardiovascular physiology. 8th ed. St. Louis: Mosby; 2001.Google Scholar
  5. 5.
    Gorcsan J III, Tanaka H. Echocardiographic assessment of myocardial strain. J Am Coll Cardiol. 2011;58:1401–13.CrossRefGoogle Scholar
  6. 6.
    von Anrep G. On the part played by the suprarenals in the normal vascular reactions of the body. J Physiol. 1912;45:307.CrossRefGoogle Scholar
  7. 7.
    Bowditch HP. Uber die Eigenthiimlichkeiten der Reizbarkeit, welche die Muskelfasern des Herzens zeigen. Ber Sachs Ges Wiss. 1871;23:652–89.Google Scholar
  8. 8.
    Leidtke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis. 1981;23:321–36.CrossRefGoogle Scholar
  9. 9.
    Young LH, et al. Regulation of myocardial glucose uptake and transport during ischemia and energetic stress. Am J Cardiol. 1999;83:25H–30.CrossRefGoogle Scholar
  10. 10.
    Stanley WC. Myocardial energy metabolism during ischemia and the mechanisms of metabolic therapies. J Cardiovasc Pharmacol Ther. 2004;9:S31–45.CrossRefGoogle Scholar
  11. 11.
    Fabiato A, et al. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol. 1978;276:233–55.CrossRefGoogle Scholar
  12. 12.
    Murphy E, et al. Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res. 1991;68:1250–8.CrossRefGoogle Scholar
  13. 13.
    Hasenfuss G, et al. Calcium cycling in congestive heart failure. J Mol Cell Cardiol. 2002;34:951–69.CrossRefGoogle Scholar
  14. 14.
    Houser SR, et al. Is depressed myocyte contractility centrally involved in heart failure? Circ Res. 2003;92:350–8.CrossRefGoogle Scholar
  15. 15.
    Mann DL. Basic mechanisms of disease progression in the failing heart: the role of excessive adrenergic drive. Prog Cardiovasc Dis. 1998;41:1–8.CrossRefGoogle Scholar
  16. 16.
    Bristow MR. Beta-adrenergic receptor blockade in chronic heart failure. Circulation. 2000;101:558.CrossRefGoogle Scholar
  17. 17.
    Alpert NR, et al. The failing human heart. Cardiovasc Res. 2002;54:1–10.CrossRefGoogle Scholar
  18. 18.
    Bristow MR. The adrenergic nervous system in heart failure. N Engl J Med. 1984;311:850–1.CrossRefGoogle Scholar
  19. 19.
    Houser SR, et al. Functional properties of failing human ventricular myocytes. Trends Cardiovasc Med. 2000;10:101–7.CrossRefGoogle Scholar
  20. 20.
    Beuckelmann DJ, et al. Altered diastolic [Ca2+]i handling in human ventricular myocytes from patients with terminal heart failure. Am Heart J. 1995;129:684–9.CrossRefGoogle Scholar
  21. 21.
    Opie LH. Drugs for the heart. 7th ed. Philadelphia: Saunders Elsevier; 2009.Google Scholar
  22. 22.
    Marino PL. ICU book. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2007.Google Scholar

Suggested Reading

  1. Darovic GO. Hemodynamic monitoring: invasive and noninvasive clinical application. 3rd ed. Philadelphia: WB Saunders; 2002.Google Scholar
  2. Kern MJ. Hemodynamic rounds: interpretation of cardiac pathophysiology from waveform analysis. 2nd ed. New York: Wiley-Liss; 1999.Google Scholar
  3. Ragosta M. Textbook of clinical hemodynamics. Philadelphia: Saunders; 2008.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Advanced Heart Failure/Transplant CardiologyOhio State UniversityColumbusUSA
  2. 2.Interventional CardiologySumma HealthAkronUSA

Personalised recommendations