Advertisement

Afterload

  • Amanda R. VestEmail author
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Cardiac afterload is a semiquantitative composite assessment of a determinant of cardiac output. Afterload is the force again which the heart pumps to expel blood into the vasculature and can be understood in the whole heart as the stress encountered by left ventricular myofibers as they contract against the end-diastolic volume. Wall tension can be at least in part described by LaPlace’s equation and aids in the explanation of why a dilated ventricle (with an increased chamber radius) must develop a greater inward force than a smaller heart to generate the same systolic pressure. The dilated ventricle is, therefore, vulnerable to an afterload mismatch whereby a high afterload can significantly decrease cardiac output. Addressing this mismatch with vasodilators is an established therapeutic strategy to augment cardiac output in the setting of both acute and chronic heart failure.

Keywords

Afterload Vasculature Impedance Compliance Elastance Vasodilation 

References

  1. 1.
    Fuster V, Walsh R, Harrington R. Hurst’s the heart, vol. 1. 13th ed. New York: McGraw Hill; 2011.Google Scholar
  2. 2.
    MacGregor DC, Covell JW, Mahler F, Dilley RB, Ross JJ. Relations between afterload, stroke volume, and descending limb of Starling’s curve. Am J Physiol. 1974;227(4):884–90.CrossRefGoogle Scholar
  3. 3.
    Hales S. Statistical essays: containing haemastaticks, History of medicine series. Library of New York Academy of Medicine. New York: Hafner; 1733. Reproduced in 1964, no. 22.Google Scholar
  4. 4.
    Poiseuille JLM. Recherches experimentales sur le mouvement des liquids dans les tubes de tres petits diametres. Mem Savant Etrangers. 1846;9:433–544.Google Scholar
  5. 5.
    Nichols WW, Edwards DG. Arterial elastance and wave reflection augmentation of systolic blood pressure: deleterious effects and implications for therapy. J Cardiovasc Pharmacol Ther. 2001;6:5.CrossRefGoogle Scholar
  6. 6.
    Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, Vasan RS, Levy D. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham heart study. Hypertension. 2004;43:1239–45.CrossRefGoogle Scholar
  7. 7.
    Hashimoto J, Ito S. Some mechanical aspects of arterial aging: physiological overview based on pulse wave analysis. Ther Adv Cardiovasc Dis. 2009;3:367.CrossRefGoogle Scholar
  8. 8.
    Chirinos JA, Kips JG, Jacobs DR Jr, Brumback L, Duprez DA, Kronmal R, Bluemke D, Townsend RR, Vermeersch S, Segers P. Arterial wave reflections and incident cardiovascular events and heart failure. J Am Coll Cardiol. 2012;60:2170–7.CrossRefGoogle Scholar
  9. 9.
    Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, Boutouyrie P, Cameron J, Chen C-H, Cruickshank JK, Hwang S-J, Lakatta EG, Laurent S, Maldonado J, Mitchell GF, Najjar SS, Newman AB, Ohishi M, Pannier B, Pereira T, Vasan RS, Shokawa T, Sutton-Tyrell K, Verbeke F, Wang K-L, Webb DJ, Willum Hansen T, Zoungas S, McEniery CM, Cockcroft JR, Wilkinson IB. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.CrossRefGoogle Scholar
  10. 10.
    O’Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol. 2007;50:1–13.CrossRefGoogle Scholar
  11. 11.
    Little RC, Little WC. Cardiac preload, afterload, and heart failure. Arch Intern Med. 1982;142(4):819–22.CrossRefGoogle Scholar
  12. 12.
    Westerhof N, Stergiopulos N, Noble MIM. Snapshots of hemodynamics: an aid for clinical research and graduate education. 2nd ed. New York: Springer; 2010.CrossRefGoogle Scholar
  13. 13.
    Niederberger J, Schima H, Maurer G, Baumgartner H. Importance of pressure recovery for the assessment of aortic stenosis by Doppler ultrasound. Role of aortic size, aortic valve area, and direction of the stenotic jet in vitro. Circulation. 1996;94:1934–40.CrossRefGoogle Scholar
  14. 14.
    Covell JW, Pouleur H, Ross J Jr. Left ventricular wall stress and aortic input impedance. Fed Proc. 1980;39(2):202–7.PubMedGoogle Scholar
  15. 15.
    Ross J Jr. Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis. 1976;18(4):255–64.CrossRefGoogle Scholar
  16. 16.
    Ross J Jr, Franklin D, Sasayama S. Preload, afterload, and the role of afterload mismatch in the descending limb of cardiac function. Eur J Cardiol. 1976;4(Suppl):77–86.PubMedGoogle Scholar
  17. 17.
    Rockman HA, Ross RS, Harris AN, Knowlton KU, Steinhelper ME, Field LJ, Ross J Jr, Chien KR. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci. 1991;88:8277–81.CrossRefGoogle Scholar
  18. 18.
    Fuster V, Walsh R. Hurst’s the heart, vol. 1. 13th ed. McGraw Hill: Harrington; 2011.Google Scholar
  19. 19.
    Iaizzo PA. Handbook of cardiac anatomy, physiology and devices. 2nd ed. New York: Springer; 2009. p. 271–96.Google Scholar
  20. 20.
    Rhode E, Ogawa S. Uber den einfluss der mechanischen bedingungen auf die totigkeit und den sauerstaffverback des warmbluterheizens. Arch Exp Path u Pharmakol. 1912;68:401–34.CrossRefGoogle Scholar
  21. 21.
    Sarnoff SJ, Braunwald E, Welch GH Jr, Case RB, Stainsby WN, Macruz R. Hemodynamic determinants of oxygen consumption of the heart with specific reference to the tension time index. Am J Phys. 1958;192:148–56.CrossRefGoogle Scholar
  22. 22.
    Kitamura K, Jorgensen CR, Gobel FL, Taylor HL, Wang Y. Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J Appl Physiol. 1972;32:516–22.CrossRefGoogle Scholar
  23. 23.
    Goldstein RE, Epstein SE. The use of indirect indices of myocardial oxygen consumption in evaluating angina pectoris. Chest. 1973;63(3):302–5.CrossRefGoogle Scholar
  24. 24.
    Daily EK, Schroeder JS. Techniques in bedside hemodynamic monitoring. 5th ed. St. Louis: Mosby; 1994.Google Scholar
  25. 25.
    Badesch DB, Champion HC, Sanchez MA, Hoeper MM, Loyd JE, Manes A, McGoon M, Naeije R, Olschewski H, Oudiz RJ, Torbicki A. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54:S55–66.CrossRefGoogle Scholar
  26. 26.
    Farber HW, Loscalzo J. Pulmonary arterial hypertension. N Engl J Med. 2004;351:1655–65.CrossRefGoogle Scholar
  27. 27.
    Hoeper MM, McLaughlin VV, Dalaan AM, Satoh T, Galie N. Treatment of pulmonary hypertension. Lancet Respir Med. 2016;4(4):323–36.CrossRefGoogle Scholar
  28. 28.
    Khot UN, Novaro GM, Popović ZB, Mills RM, Thomas JD, Tuzcu EM, Hammer D, Nissen SE, Francis GS. Nitroprusside in critically ill patients with left ventricular dysfunction and aortic stenosis. N Engl J Med. 2003;348:1756–63.CrossRefGoogle Scholar
  29. 29.
    Flaherty JT, Magee PA, Gardner TL, Potter A, MacAllister NP. Comparison of intravenous nitroglycerin and sodium nitroprusside for treatment of acute hypertension developing after coronary artery bypass surgery. Circulation. 1982;65:1072–7.CrossRefGoogle Scholar
  30. 30.
    Bos WJ, Zietse R, Wesseling KH, Westerhof N. Effects of arteriovenous fistulas on cardiac oxygen supply and demand. Kidney Int. 1999;55(5):2049–53.CrossRefGoogle Scholar
  31. 31.
    Sagawa K. Analysis of the ventricular pumping capacity as function of input and output pressure loads. In: Reeve EB, Guyton AC, editors. Physical bases of circulatory transport: regulation and exchange. Philadelphia: WB Saunders; 1967. p. 141–9.Google Scholar
  32. 32.
    Chirinos JA, Sweitzer N. Ventricular-Arterial coupling in chronic heart failure. Card Fail Rev. 2017;3:12–8.CrossRefGoogle Scholar
  33. 33.
    Norton JM. Toward consistent definitions for preload and afterload. Adv Physiol Educ. 2001;25(1–4):53–61.CrossRefGoogle Scholar
  34. 34.
    Loushin MK, Quill JL, Iaizzo PA. Mechanical aspects of cardiac performance. In: Iaizzo PA, editor. Handbook of cardiac anatomy, physiology, and devices. 2nd ed. New York: Springer; 2009. p. 271–96.CrossRefGoogle Scholar
  35. 35.
    Bashore TM. Clinical hemodynamics in valvular heart disease. In: Wang A, Bashore TM, editors. Valvular heart disease. New York: Humana-Springer; 2009. p. 93–122.CrossRefGoogle Scholar

Suggested Reading

  1. Fuster V, Walsh R, Harrington R. Hurst’s the heart, vol. 1. 1st ed. New York: McGraw Hill; 2011. (Part 2, Chapter 5 and Part 3, Chapter 14).Google Scholar
  2. Nichols WW, Edwards DG. Arterial elastance and wave reflection augmentation of systolic blood pressure: deleterious effects and implications for therapy. J Cardiovasc Pharmacol Ther. 2001;6:5.CrossRefGoogle Scholar
  3. Ross J Jr. Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis. 1976;18(4):255–64.CrossRefGoogle Scholar
  4. Weber T, Chirinos JA. Pulsatile arterial haemodynamics in heart failure. Eur Heart J. 2018;37:2129.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of CardiologyTufts Medical CenterBostonUSA

Personalised recommendations