Advertisement

Objective Evaluation of Hemodynamics in the Outpatient Setting

  • Gbolahan Ogunbayo
  • Ahmed Abdel-LatifEmail author
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Hospital readmissions are associated with significant morbidity and mortality among patients with heart failure and other cardiovascular diseases. Hospital readmissions are also a performance metric for healthcare insurers. In patients at risk of multiple readmissions, outpatient hemodynamic monitoring becomes imperative to prevent these readmissions. Outpatient assessment of cardiovascular hemodynamics provides a way to monitor patients in the ambulatory/outpatient setting or remotely. This modality reduces cost and gives clinicians an opportunity to be proactive about changes in a patient’s volume status before the development of clinical symptoms and hospital readmission. Advances in these ambulatory/outpatient and remote monitoring options will improve care, decrease readmissions, and reduce direct and indirect costs to the healthcare system. This chapter describes the various remote or ambulatory/outpatient options for hemodynamic monitoring as well as how they work and the advantages and disadvantages of each one.

Keywords

Ambulatory Outpatient Remote monitoring Noninvasive hemodynamic assessment Echocardiography Intracardiac impedance Plethysmography Bioreactance 

References

  1. 1.
    Nakamura N, Koga T, Iseki H. A meta-analysis of remote patient monitoring for chronic heart failure patients. J Telemed Telecare. 2014;20(1):11–7.  https://doi.org/10.1177/1357633X13517352.CrossRefPubMedGoogle Scholar
  2. 2.
    Klersy C, De Silvestri A, Gabutti G, Regoli F, Auricchio A. A meta-analysis of remote monitoring of heart failure patients. J Am Coll Cardiol. 2009;54(18):1683–94.  https://doi.org/10.1016/j.jacc.2009.08.017.CrossRefPubMedGoogle Scholar
  3. 3.
    Abraham WT, Adamson PB, Bourge RC, Aaron MF, Costanzo MR, Stevenson LW, Strickland W, Neelagaru S, Raval N, Krueger S, Weiner S, Shavelle D, Jeffries B, Yadav JS. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377(9766):658–66.  https://doi.org/10.1016/S0140-6736(11)60101-3.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Small RS, Wickemeyer W, Germany R, Hoppe B, Andrulli J, Brady PA, Labeau M, Koehler J, Sarkar S, Hettrick DA, Tang WHW. Changes in intrathoracic impedance are associated with subsequent risk of hospitalizations for acute decompensated heart failure: clinical utility of implanted device monitoring without a patient alert. J Card Fail. 2009;15(6):475–81.  https://doi.org/10.1016/j.cardfail.2009.01.012.CrossRefPubMedGoogle Scholar
  5. 5.
    Domenichini G, Rahneva T, Diab IG, Dhillon OS, Campbell NG, Finlay MC, Baker V, Hunter RJ, Earley MJ, Schilling RJ. The lung impedance monitoring in treatment of chronic heart failure (the LIMIT-CHF study). Europace. 2016;18(3):428–35.  https://doi.org/10.1093/europace/euv293.CrossRefPubMedGoogle Scholar
  6. 6.
    Boehmer JP, Hariharan R, Devecchi FG, Smith AL, Molon G, Capucci A, An Q, Averina V, Stolen CM, Thakur PH, Thompson JA, Wariar R, Zhang Y, Singh JP. A multisensor algorithm predicts heart failure events in patients with implanted devices: results from the MultiSENSE study. JACC Heart Fail. 2017;5(3):216–25.  https://doi.org/10.1016/j.jchf.2016.12.011.CrossRefPubMedGoogle Scholar
  7. 7.
    Sangkum L, Liu GL, Yu L, Yan H, Kaye AD, Liu H. Minimally invasive or noninvasive cardiac output measurement: an update. J Anesth. 2016;30(3):461–80.  https://doi.org/10.1007/s00540-016-2154-9.CrossRefPubMedGoogle Scholar
  8. 8.
    Belardinelli R, Ciampani N, Costantini C, Blandini A, Purcaro A. Comparison of impedance cardiography with thermodilution and direct Fick methods for noninvasive measurement of stroke volume and cardiac output during incremental exercise in patients with ischemic cardiomyopathy. Am J Cardiol. 1996;77(15):1293–301.  https://doi.org/10.1016/S0002-9149(97)89153-9.CrossRefPubMedGoogle Scholar
  9. 9.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ V, Mitchell JE, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American college of cardiology foundation/American heart association task force on practice guidelines. Circulation. 2013;128(16).  https://doi.org/10.1161/CIR.0b013e31829e8776.
  10. 10.
    Landolina M, Perego GB, Lunati M, Curnis A, Guenzati G, Vicentini A, Parati G, Borghi G, Zanaboni P, Valsecchi S, Marzegalli M. Remote monitoring reduces healthcare use and improves quality of care in heart failure patients with implantable defibrillators: the evolution of management strategies of heart failure patients with implantable defibrillators (EVOLVO) study. Circulation. 2012;125(24):2985–92.  https://doi.org/10.1161/CIRCULATIONAHA.111.088971.CrossRefPubMedGoogle Scholar
  11. 11.
    Varma N, Epstein AE, Irimpen A, Schweikert R. Efficacy and safety of automatic remote monitoring for implantable Cardioverter-defibrillator follow-up. Circulation. 2010;122:325–32.  https://doi.org/10.1161/CIRCULATIONAHA.110.937409.CrossRefPubMedGoogle Scholar
  12. 12.
    Mullens W, Borowski AG, Curtin RJ, Thomas JD, Tang WH. Tissue Doppler imaging in the estimation of intracardiac filling pressure in decompensated patients with advanced systolic heart failure. Circulation. 2009;119(1):62–70.  https://doi.org/10.1161/CIRCULATIONAHA.108.779223.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Goonewardena SN, Blair JEA, Manuchehry A, Brennan JM, Keller M, Reeves R, Price A, Spencer KT, Puthumana J, Gheorghiade M. Use of hand carried ultrasound, B-type natriuretic peptide, and clinical assessment in identifying abnormal left ventricular filling pressures in patients referred for right heart catheterization. J Card Fail. 2010;16(1):69–75.  https://doi.org/10.1016/j.cardfail.2009.08.004.CrossRefPubMedGoogle Scholar
  14. 14.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJV, Mitchell JE, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology foundation/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2013;62(16):1495–539.  https://doi.org/10.1016/j.jacc.2013.05.020.CrossRefGoogle Scholar
  15. 15.
    Berger R, Huelsman M, Strecker K, Bojic A, Moser P, Stanek B, Pacher R. B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation. 2002;105(20):2392–7.  https://doi.org/10.1161/01.CIR.0000016642.15031.34.CrossRefPubMedGoogle Scholar
  16. 16.
    Gheorghiade M, Follath F, Ponikowski P, Barsuk JH, Blair JEA, Cleland JG, Dickstein K, Drazner MH, Fonarow GC, Jaarsma T, Jondeau G, Sendon JL, Mebazaa A, Metra M, Nieminen M, Pang PS, Seferovic P, et al. Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European society of cardiology and endorsed by the European society of intensive care medicine. Eur J Heart Fail. 2010;12(5):423–33.  https://doi.org/10.1093/eurjhf/hfq045.CrossRefPubMedGoogle Scholar
  17. 17.
    Lucas C, Johnson W, Hamilton MA, Fonarow GC, Woo MA, Flavell CM, Creaser JA, Stevenson LW. Freedom from congestion predicts good survival despite previous class IV symptoms of heart failure. Am Heart J. 2000;140(6):840–7.  https://doi.org/10.1067/mhj.2000.110933.CrossRefPubMedGoogle Scholar
  18. 18.
    Adamson PB, Bharmi R, Dalal N, Abraham WT. Impact of pulmonary artery pressure monitoring on all-cause 30-day hf readmissions and associated centers for medicare and medicaid services hospital readmissions reduction program penalty. J Card Fail. 2015;21(8):S115.  https://doi.org/10.1016/j.cardfail.2015.06.332.CrossRefGoogle Scholar
  19. 19.
    Santas E, de la Espriella-Juan R, Mollar A, Valero E, Miñana G, Sanchis J, Chorro FJ, Núñez J. Echocardiographic pulmonary artery pressure estimation and heart failure rehospitalization burden in patients with acute heart failure. Int J Cardiol. 2018;241:407–10.  https://doi.org/10.1016/j.ijcard.2017.04.055. CrossRefGoogle Scholar
  20. 20.
    Hoppe UC, Vanderheyden M, Sievert H, Brandt MC, Tobar R, Wijns W, Rozenman Y. Chronic monitoring of pulmonary artery pressure in patients with severe heart failure: multicentre experience of the monitoring pulmonary artery pressure by implantable device responding to ultrasonic signal (PAPIRUS) II study. Heart. 2009;95(13):1091–7.  https://doi.org/10.1136/hrt.2008.153486.CrossRefPubMedGoogle Scholar
  21. 21.
    Adamson PB, Abraham WT, Stevenson LW, Desai AS, Lindenfeld J, Bourge RC, Bauman J. Pulmonary artery pressure-guided heart failure management reduces 30-day readmissions. Circ Heart Fail. 2016;9(6)  https://doi.org/10.1161/CIRCHEARTFAILURE.115.002600.
  22. 22.
    Adamson PB, Magalski A, Braunschweig F, Böhm M, Reynolds D, Steinhaus D, Luby A, Linde C, Ryden L, Cremers B, Takle T, Bennett T. Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system. J Am Coll Cardiol. 2003;41(4):565–71.  https://doi.org/10.1016/S0735-1097(02)02896-6.CrossRefPubMedGoogle Scholar
  23. 23.
    Desai AS, Bhimaraj A, Bharmi R, Jermyn R, Bhatt K, Shavelle D, Redfield MM, Hull R, Pelzel J, Davis K, Dalal N, Adamson PB, Heywood JT. Ambulatory hemodynamic monitoring reduces heart failure hospitalizations in “real-world” clinical practice. J Am Coll Cardiol. 2017;69(19):2357–65.  https://doi.org/10.1016/j.jacc.2017.03.009.CrossRefPubMedGoogle Scholar
  24. 24.
    Heywood JT, Jermyn R, Shavelle D, Abraham WT, Bhimaraj A, Bhatt K, Sheikh F, Eichorn E, Lamba S, Bharmi R, Agarwal R, Kumar C, Stevenson LW. Impact of practice-based management of pulmonary artery pressures in 2000 patients implanted with the CardioMEMS sensor. Circulation. 2017;135(16):1509–17.  https://doi.org/10.1161/CIRCULATIONAHA.116.026184.CrossRefPubMedGoogle Scholar
  25. 25.
    Abraham WT, Stevenson LW, Bourge RC, Lindenfeld JA, Bauman JG, Adamson PB. Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet. 2016;387(10017):453–61.  https://doi.org/10.1016/S0140-6736(15)00723-0.CrossRefPubMedGoogle Scholar
  26. 26.
    Adamson PB, Abraham WT, Aaron M, Aranda JM, Bourge RC, Smith A, Stevenson LW, Bauman JG, Yadav JS. CHAMPION trial rationale and design: the long-term safety and clinical efficacy of a wireless pulmonary artery pressure monitoring system. J Card Fail. 2011;17(1):3–10.  https://doi.org/10.1016/j.cardfail.2010.08.002.CrossRefPubMedGoogle Scholar
  27. 27.
    Abraham WT. The role of implantable hemodynamic monitors to manage heart failure. Cardiol Clin. 2017;35(2):273–9.  https://doi.org/10.1016/j.ccl.2016.12.009.CrossRefPubMedGoogle Scholar
  28. 28.
    Vanoli E, D’Elia E, La Rovere MT, Gronda E. Remote heart function monitoring: role of the CardioMEMS HF system. J Cardiovasc Med. 2016;17(7):518–23.  https://doi.org/10.2459/JCM.0000000000000367.CrossRefGoogle Scholar
  29. 29.
    Mooney DM, Fung E, Doshi RN, Shavelle DM. Evolution from electrophysiologic to hemodynamic monitoring: the story of left atrial and pulmonary artery pressure monitors. Front Physiol. 2015;6.  https://doi.org/10.3389/fphys.2015.00271.
  30. 30.
    Abraham WT, Adamson PB, Costanzo MR, Eigler N, Gold M, Klapholz M, Maurer M, Saxon L, Singh J, Troughton R. Hemodynamic monitoring in advanced heart failure: results from the LAPTOP-HF trial. J Card Fail. 2016;22(11):940.  https://doi.org/10.1016/j.cardfail.2016.09.012.CrossRefGoogle Scholar
  31. 31.
    Troughton RW, Ritzema J, Eigler NL, Melton IC, Krum H, Adamson PB, Kar S, Shah PK, Whiting JS, Heywood JT, Rosero S, Singh JP, Saxon L, Matthews R, Crozier IG, Abraham WT. Direct left atrial pressure monitoring in severe heart failure: long-term sensor performance. J Cardiovasc Transl Res. 2011;4(1):3–13.  https://doi.org/10.1007/s12265-010-9229-z.CrossRefPubMedGoogle Scholar
  32. 32.
    Ritzema J, Melton IC, Richards AM, Crozier IG, Frampton C, Doughty RN, Whiting J, Kar S, Eigler N, Krum H, Abraham WT, Troughton RW. Direct left atrial pressure monitoring in ambulatory heart failure patients: initial experience with a new permanent implantable device. Circulation. 2007;116(25):2952–9.  https://doi.org/10.1161/CIRCULATIONAHA.107.702191.CrossRefPubMedGoogle Scholar
  33. 33.
    Drazner MH, Thompson B, Rosenberg PB, Kaiser PA, Boehrer JD, Baldwin BJ, Dries DL, Yancy CW. Comparison of impedance cardiography with invasive hemodynamic measurements in patients with heart failure secondary to ischemic or nonischemic cardiomyopathy. Am J Cardiol. 2002;89(8):993–5.  https://doi.org/10.1016/S0002-9149(02)02257-9.CrossRefPubMedGoogle Scholar
  34. 34.
    Yu CM, Wang L, Chau E, Chan RHW, Kong SL, Tang MO, Christensen J, Stadler RW, Lau CP. Intrathoracic impedance monitoring in patients with heart failure: correlation with fluid status and feasibility of early warning preceding hospitalization. Circulation. 2005;112(6):841–8.  https://doi.org/10.1161/CIRCULATIONAHA.104.492207.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang L, Lahtinen S, Lentz L, Rakow N, Kaszas C, Ruetz L, Stylos L, Olson WH. Feasibility of using an implantable system to measure thoracic congestion in an ambulatory chronic heart failure canine model. PACE – Pacing Clin Electrophysiol. 2005;28(5):404–11.  https://doi.org/10.1111/j.1540-8159.2005.40009.x. CrossRefPubMedGoogle Scholar
  36. 36.
    Khoury DS, Naware M, Siou J, Blomqvist A, Mathuria NS, Wang J, Shih HT, Nagueh SF, Panescu D. Ambulatory monitoring of congestive heart failure by multiple bioelectric impedance vectors. J Am Coll Cardiol. 2009;53(12):1075–81.  https://doi.org/10.1016/j.jacc.2008.12.018.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Vollmann D, Nägele H, Schauerte P, Wiegand U, Butter C, Zanotto G, Quesada A, Guthmann A, Hill MRS, Lamp B. Clinical utility of intrathoracic impedance monitoring to alert patients with an implanted device of deteriorating chronic heart failure. Eur Heart J. 2007;28(15):1835–40.  https://doi.org/10.1093/eurheartj/ehl506.CrossRefPubMedGoogle Scholar
  38. 38.
    Catanzariti D, Lunati M, Landolina M, Zanotto G, Lonardi G, Iacopino S, Oliva F, Perego GB, Varbaro A, Denaro A, Valsecchi S, Vergara G. Monitoring intrathoracic impedance with an implantable defibrillator reduces hospitalizations in patients with heart failure. PACE – Pacing Clin Electrophysiol. 2009;32(3):363–70.  https://doi.org/10.1111/j.1540-8159.2008.02245.x. CrossRefPubMedGoogle Scholar
  39. 39.
    Summers RL, Shoemaker WC, Peacock WF, Ander DS, Coleman TG. Bench to bedside: electrophysiologic and clinical principles of noninvasive hemodynamic monitoring using impedance cardiography. Acad Emerg Med. 2003;10(6):669–80.  https://doi.org/10.1111/j.1553-2712.2003.tb00054.x.CrossRefPubMedGoogle Scholar
  40. 40.
    Yancy C, Abraham WT. Noninvasive hemodynamic monitoring in heart failure: utilization of impedance cardiography. Congest Heart Fail. 2003;9(5):241–50.  https://doi.org/10.1111/j.1751-7133.2003.tb00021.x.CrossRefPubMedGoogle Scholar
  41. 41.
    Winter UJ, Klocke RK, Kubicek WGNW, editors. Thoracic impedance measurements in clinical cardiology. New York: Thieme Medical Publishers; 1994.Google Scholar
  42. 42.
    Nyboer J. Electrical impedance plethysmography; a physical and physiologic approach to peripheral vascular study. Circulation. 1950;2(6):811–21.  https://doi.org/10.1161/01.CIR.2.6.811.CrossRefPubMedGoogle Scholar
  43. 43.
    Sramek B. Thoracic electric bioimpedance. Basic principles and physiologic relationships. Cesk Fysiol. 1993;42(3–4):111–5.PubMedGoogle Scholar
  44. 44.
    Bernstein DP. A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Crit Care Med. 1986;14(10):904–9.CrossRefGoogle Scholar
  45. 45.
    Newman DG, Callister R. The non-invasive assessment of stroke volume and cardiac output by impedance cardiography: a review. Aviat Space Environ Med. 1999;70(8):780–9.PubMedGoogle Scholar
  46. 46.
    Lau CP, Siu DCW, Tse HF. Optimizing heart failure therapy with implantable sensors. J Arrhythmia. 2012;28(1):4–18.  https://doi.org/10.1016/j.joa.2012.02.003.CrossRefGoogle Scholar
  47. 47.
    Heist EK, Herre JM, Binkley PF, Van Bakel AB, Porterfield JG, Porterfield LM, Qu F, Turkel M, Pavri BB. Analysis of different device-based intrathoracic impedance vectors for detection of heart failure events (from the detect fluid early from intrathoracic impedance monitoring study). Am J Cardiol. 2014;114(8):1249–56.  https://doi.org/10.1016/j.amjcard.2014.07.048.CrossRefPubMedGoogle Scholar
  48. 48.
    Liu PS, Tse HF. Implantable sensors for heart failure monitoring. J Arrhythmia. 2013;29(6):314–9.  https://doi.org/10.1016/j.joa.2013.06.003.CrossRefGoogle Scholar
  49. 49.
    Bocchiardo M, Vilsendorf DMZ, Militello C, Lippert M, Czygan G, Gaita F, Schauerte P, Stellbrink C. Intracardiac impedance monitors stroke volume in resynchronization therapy patients. Europace. 2010;12(5):702–7.  https://doi.org/10.1093/europace/euq045.CrossRefPubMedGoogle Scholar
  50. 50.
    Whellan DJ, Ousdigian KT, Al-Khatib SM, Pu W, Sarkar S, Porter CB, Pavri BB, O’Connor CM. Combined heart failure device diagnostics identify patients at higher risk of subsequent heart failure hospitalizations. Results from PARTNERS HF (program to access and review trending information and evaluate correlation to symptoms in patients with hear). J Am Coll Cardiol. 2010;55(17):1803–10.  https://doi.org/10.1016/j.jacc.2009.11.089.CrossRefPubMedGoogle Scholar
  51. 51.
    Whellan D, Alkhatib S, Kloosterman E, Kutalek S, Manaris A, Oconnor C, Pavri B, Porter C, Singh A, Lung T. Changes in Intrathoracic fluid index predict subsequent adverse events: results of the multi-site program to access and review trending INformation and evaluate CoRrelation to symptoms in patients with heart failure (PARTNERS HF) trial. J Card Fail. 2008;14(9):799–799.  https://doi.org/10.1016/j.cardfail.2008.10.015.
  52. 52.
    Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. 2007;10032:583–9.  https://doi.org/10.1152/ajpheart.00195.2007.
  53. 53.
    Cotter G, Moshkovitz Y, Kaluski E. Clinical investigations in critical care accurate, noninvasive continuous monitoring of cardiac output by whole-body electrical bioimpedance∗. 2004. Chest; 125: 1431-1440.Google Scholar
  54. 54.
    Jaffe MB. Partial CO2 rebreathing cardiac output-operating principles of the NICO(TM) system. J Clin Monit Comput. 1999;15(6):387–401.  https://doi.org/10.1023/A:1009981313076.CrossRefPubMedGoogle Scholar
  55. 55.
    Killick C, Parkin W. Non-invasive cardiac output measurement using a fast mixing box to measure carbon dioxide elimination. Anaesth Intensive Care. 2008;36(5):665–73. https://doi.org/10.1177/0310057X0803600506.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Gill Heart Institute and Division of Cardiovascular MedicineUniversity of KentuckyLexingtonUSA
  2. 2.VA Medical CenterLexingtonUSA
  3. 3.Saha Cardiovascular Research CenterUniversity of KentuckyLexingtonUSA

Personalised recommendations