Advertisement

CT and MRI Cardiovascular Hemodynamics

  • Andrew O. ZurickEmail author
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Noninvasive cardiac imaging has experienced dynamic improvements over the past several decades and, increasingly, is a cornerstone of contemporary cardiovascular care. Multiple, complementary technologies, including magnetic resonance imaging (MRI), computed tomography (CT), echocardiography, nuclear scintigraphy, fluoroscopy, and angiography, are now capable of directly or indirectly providing information on cardiac and great vessel anatomy, volumes and function, myocardial perfusion, valvular morphology and function, coronary artery blood flow, and presence or absence of myocardial fibrosis or scar. Further, several of these technologies now are capable of providing a noninvasive hemodynamic assessment, which has otherwise primarily in the past been the domain and strength of echocardiography and invasive catheterization. Both CT and MRI have been proven to be accurate and reproducible, with each now capable of providing noninvasive hemodynamic information which is capable of enhancing clinical decision-making and impacting patient care. However, the use of this information must be based on a thorough knowledge of the strengths and weaknesses of the various noninvasive methods of hemodynamic assessment. Understanding the applications and limitations of these modalities will permit their effective and efficient usage in the future.

Keywords

Computed tomography (CT) Magnetic resonance imaging (MRI) Hemodynamic Ischemia Diastolic function Myocardial perfusion Fractional flow reserve (FFR) 

References

  1. 1.
    Finn JP, Nael K, Deshpande V, Ratib O, Laub G. Cardiac MR imaging: state of the technology. Radiology. 2006;241:338–54.PubMedCrossRefGoogle Scholar
  2. 2.
    Hillenbrand HB, Lima JA, Bluemke DA, Beache GM, McVeigh ER. Assessment of myocardial systolic function by tagged magnetic resonance imaging. J Cardiovasc Magn Reson. 2000;2:57–66.PubMedCrossRefGoogle Scholar
  3. 3.
    Bollache E, Redheuil A, Clément-Guinaudeau S, Defrance C, Perdrix L, Ladouceur M, Lefort M, De Cesare A, Herment A, Diebold B, Mousseaux E, Kachenoura N. Automated left ventricular diastolic function evaluation from phase – contrast magnetic resonance and comparison with Doppler echocardiography. J Cardiovasc Magn Reson. 2010;12:63.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Malaty AN, Shah DJ, Abdelkarim AR, Nagueh SF. Relation of replacement fibrosis to left ventricular diastolic function in patients with dilated cardiomyopathy. J Am Soc Echocardiogr. 2011;24:333–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Karaahmet T, Tigen K, Dundar C, et al. The effect of cardiac fibrosis on left ventricular remodeling, diastolic function, and N-terminal pro-B-type natriuretic peptide levels in patients with non-ischemic dilated cardiomyopathy. Echocardiography. 2010;27:954–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Codreanu I, Robson MD, Golding SJ, et al. Longitudinally and circumferentially directed movements of the left ventricle studied by cardiovascular magnetic resonance phase contrast velocity mapping. J Cardiovasc Magn Reson. 2010;12:48.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lipinski MJ, et al. Prognostic value of stress cardiac magnetic resonance imaging in patients with known or suspected coronary artery disease. J Am Coll Cardiol. 2013;62:826–38.PubMedCrossRefGoogle Scholar
  8. 8.
    Liu A, et al. Gadolinium-free cardiac MR stress T1-mapping to distinguish epicardial from microvascular coronary artery disease. J Am Coll Cardiol. 2018;71:957–68.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    MacMillan RM, Rees MR, Eldredge WJ, Maranhao V, Clark DL. Quantitation of shunting at the atrial level using rapid acquisition computed tomography with comparison with cardiac catherization. J Am Coll Cardiol. 1986;7:946–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Rajiah P, Kanne JP. Computed tomography of septal defects. J Cardiovasc Comput Tomogr. 2010;4:231–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Garrett JS, Jaschke W, Botvinick EH, Higgins CB, Lipton MJ. Quantitation of intracardiac shunts by cine CT. J Comput Assist Tomogr. 1988;12:82–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Diethelm L, Dery R, Lipton MJ, Higgins CB. Atrial-level shunts: sensitivity and specificity of MR in diagnosis. Radiology. 1987;162:181–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Holmvang G, Palacios IF, Vlahakes GJ, et al. Imaging and sizing of atrial septal defects by magnetic resonance. Circulation. 1995;92:3473–80.PubMedCrossRefGoogle Scholar
  14. 14.
    Hundley WG, Li HF, Lange RA, et al. Assessment of left-to-right intracardiac shunting by velocity-encoded, phase-difference magnetic resonance imaging: a comparison with oximetric and indicator dilution techniques. Circulation. 1995;91:2955–60.PubMedCrossRefGoogle Scholar
  15. 15.
    Anderson RH, Lenox CC, Zuberbuhler JR. The morphology of ventricular septal defects. Perspect Pediatr Pathol. 1984;8:235–68.PubMedGoogle Scholar
  16. 16.
    Williamson EE, Kirsch J, Araoz PA, Edmister WB, Borgeson DD, Glockner JF, Breen JF. ECG- gated cardiac CT angiography using 64-MDCT for detection of patent foramen ovale. AJR Am J Roentgenol. 2008;190:929–33.PubMedCrossRefGoogle Scholar
  17. 17.
    Didier D, Higgins CB. Identification and localization of ventricular septal defect by gated magnetic resonance imaging. Am J Cardiol. 1986;57:1363–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Higgins CB. Radiography of congenital heart disease. In: Higgins CB, editor. Essentials of cardiac radiology and imaging. Philadelphia: Lippincott; 1992. p. 49–90.Google Scholar
  19. 19.
    Ferrari VA, Scott CH, Holland GA, Axel L, Sutton MS. Ultrafast three-dimensional contrast-enhanced magnetic resonance angiography and imaging in the diagnosis of partial anomalous pulmonary venous drainage. J Am Coll Cardiol. 2001;37:1120–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Rathi VK, Doyle M, Yamrozik J, Williams RB, Caruppannan K, Truman C, Vido D, Biederman RW. Routine evaluation of left ventricular diastolic function by cardiovascular magnetic resonance: a practical approach. J Cardiovasc Magn Reson. 2008;8:36.CrossRefGoogle Scholar
  21. 21.
    Rathi VK, Biederman RW. Expanding role of cardiovascular magnetic resonance in left and right ventricular diastolic function. Heart Fail Clin. 2009;5:421–35.PubMedCrossRefGoogle Scholar
  22. 22.
    Boogers MJ, van Werkhoven JM, Schuijf JD, Delgado V, El-Naggar HM, Boersma E, Nucifora G, van der Geest RJ, Paelinck BP, Kroft LJ, Reiber JH, de Roos A, Bax JJ, Lamb HJ. Feasibility of diastolic function assessment with cardiac CT feasibility study in comparison with tissue Doppler imaging. JACC Cardiovasc Imaging. 2011;3:246–56.CrossRefGoogle Scholar
  23. 23.
    Nakahara T, Jinzaki M, Fukuda N, Takahashi Y, Ishihara T, Takada A, Suzuki K, Manita M, Imanari T, Kanesawa N, Kuribayashi N, Kuribayashi M. Estimation of the left ventricular diastolic function with cardiac MDCT: correlation of the slope of the time-enhancement-curve with the mitral annulus diastolic velocity. Eur J Radiol. 2011;81(2):234–8.. [Epub ahead of print]PubMedCrossRefGoogle Scholar
  24. 24.
    Bolen MA, Popovic ZB, Rajiah P, Gabriel RS, Zurick AO, Lieber ML, Flamm SD. Cardiac MR assessment of aortic regurgitation: holodiastolic flow reversal in the descending aorta helps stratify severity. Radiology. 2011;260(1):98–104.. [Epub ahead of print]PubMedCrossRefGoogle Scholar
  25. 25.
    Cawley PJ, Hamilton-Craig C, Owens DS, Krieger EV, Strugnell WE, Mitsumori L, et al. Prospective comparison of valve regurgitation quantitation by cardiac magnetic resonance imaging and transthoracic echocardiography. Circ Cardiovasc Imaging. 2013;6(1):48–57.PubMedCrossRefGoogle Scholar
  26. 26.
    Uretsky S, Gillam L, Lang R, Chaudhry FA, Argulian E, Supariwala A, et al. Discordance between echocardiography and MRI in the assessment of mitral regurgitation severity: a prospective multicenter trial. J Am Coll Cardiol. 2015;65(11):1078–88.PubMedCrossRefGoogle Scholar
  27. 27.
    Delgado V, et al. Assessment of mitral valve anatomy and geometry with multislice computed tomography. J Am Coll Cardiol Img. 2009;2:556–65.CrossRefGoogle Scholar
  28. 28.
    Ambler G, Omar RZ, Royston P, Kinsman R, Keogh BE, Taylor KM. Generic, simple risk stratification model for heart valve surgery. Circulation. 2005;112:224–31.PubMedCrossRefGoogle Scholar
  29. 29.
    Bonow RO, Carabello BA, Kanu C, de Leon AC Jr, Faxon DP, Freed MD, et al. American College of Cardiology/American Heart Association task force on practice guidelines. ACC/AHA guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation. 2006;114:e84–231.PubMedCrossRefGoogle Scholar
  30. 30.
    Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–607.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kondo C, Caputo GR, Semelka R, Foster E, Shimakawa A, Higgins CB. Right and left ventricular stroke volume measurements with velocity encoded cine MR imaging: in vitro and in vivo validation. Am J Roentgenol. 1991;157:9–16.CrossRefGoogle Scholar
  32. 32.
    Hoeper MM, Tongers J, Leppert A, Baus S, Maier R, Lotz J. Evaluation of right ventricular performance with a right ventricular ejection fraction thermodilution catheter and magnetic resonance imaging in patients with pulmonary hypertension. Chest. 2001;120:502–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Kwon D, Desai M. Cardiac magnetic resonance in hypertrophic cardiomyopathy: current state of the art. Expert Rev Cardiovasc Ther. 2010;8:103–11.PubMedCrossRefGoogle Scholar
  34. 34.
    Proctor RD, Shambrook JS, McParland P, Peebles CR, Brown IW, Harden SP. Imaging hypertrophic heart diseases with cardiovascular MR. Clin Radiol. 2011;66:176–86.PubMedCrossRefGoogle Scholar
  35. 35.
    Cheong BY, Muthupillai R, Nemeth M, Lambert B, Dees D, Huber S, Castriotta R, Flamm SD. The utility of delayed-enhancement magnetic resonance imaging for identifying nonischemic myocardial fibrosis in asymptomatic patients with biopsy-proven systemic sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2009;26:39–46.PubMedGoogle Scholar
  36. 36.
    Syed IS, Glockner JF, Feng D, Araoz PA, Martinez MW, Edwards WD, Gertz MA, Dispenzieri A, Oh JK, Bellavia D, Tajik AJ, Grogan M. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging. 2010;3:155–64.PubMedCrossRefGoogle Scholar
  37. 37.
    Austin BA, Tang WH, Rodriguez ER, Tan C, Flamm SD, Taylor DO, Starling RC, Desai MY. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging. 2009;2:1369–77.PubMedCrossRefGoogle Scholar
  38. 38.
    Desai MY, Lima JA, Bluemke DA. Cardiovascular magnetic resonance imaging: current applications and future directions. Methods Enzymol. 2004;386:122–48.PubMedCrossRefGoogle Scholar
  39. 39.
    Cheong B, Huber S, Muthupillai R, Flamm SD. Evaluation of myocardial iron overload by T2∗ cardiovascular magnetic resonance imaging. Tex Heart Inst J. 2005;32:448–9.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Vural M, Ucar O, Selvi NA, Pasaoglu L, Gurbuz MO, Cicekcioglu H, Aydogdu S, Koparal S. Assessment of global left ventricular systolic function with multidetector CT and 2D echocardiography: a comparison between reconstructions of 1-mm and 2-mm slice thickness at multidetector CT. Diagn Interv Radiol. 2010;16:236–40.PubMedGoogle Scholar
  41. 41.
    Ko SM, Kim YJ, Park JH, Choi NM. Assessment of left ventricular ejection fraction and regional wall motion with 64-slice multidetector CT: a comparison with two-dimensional transthoracic echocardiography. Br J Radiol. 2010;83:28–34.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lotz J, Meier C, Leppert A, Galanski M. Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics. 2002;22:651–71.PubMedCrossRefGoogle Scholar
  43. 43.
    Campbell M. Natural history of coarctation of the aorta. Br Heart J. 1970;32:633–40.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Achenbach S. Computed tomography coronary angiography. J Am Coll Cardiol. 2006;48:1919–28.PubMedCrossRefGoogle Scholar
  45. 45.
    Chow BJ, Kass M, Gagne O, Chen L, Yam Y, Dick A, Wells GA. Can differences in corrected coronary opacification measured with computed tomography predict resting coronary artery flow. J Am Coll Cardiol. 2011;57:1280–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Nakanishi R, Budoff M. Noninvasive FFR derived from coronary CT in the management of coronary artery disease: technology and clinical update. Vasc Health Risk Manag. 2016;12:269–78.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Coenen A, Lubbers MM, Kurata A, et al. Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology. 2015;274:674–83.PubMedCrossRefGoogle Scholar
  48. 48.
    Koo BK, Erglis A, Doh JH, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter discover-flow (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol. 2011;58:1989–97.PubMedCrossRefGoogle Scholar
  49. 49.
    Min JK, Leipsic J, Pencina MJ, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308:1237–45.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Nørgaard BL, Leipsic J, Gaur S, NXT Trial Study Group, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol. 2014;63:1145–55.PubMedCrossRefGoogle Scholar
  51. 51.
    Renker M, Schoepf UJ, Wang R, et al. Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve. Am J Cardiol. 2014;114:1303–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Baumann S, Wang R, Schoepf UJ, et al. Coronary CT angiography- derived fractional flow reserve correlated with invasive fractional flow reserve measurements – initial experience with a novel physician-driven algorithm. Eur Radiol. 2015;25:1201–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Pontone G, et al. Incremental diagnostic value of stress computed tomography myocardial perfusion with whole-heart coverage CT scanner in intermediate- to high-risk symptomatic patients suspected of coronary artery disease. J Am Coll Cardiol Img. 2019;12:338–49.PubMedGoogle Scholar
  54. 54.
    Blankstein R, Jerosch-Herold M. Stress myocardial perfusion imaging by computed tomography: a dynamic road is ahead. JACC Cardiovasc Imaging. 2010;3:821–3.PubMedCrossRefGoogle Scholar
  55. 55.
    Tamarappoo BK, Dey D, Nakazato R, Shmilovich H, Smith T, Cheng VY, Thomson LE, Hayes SW, Friedman JD, Germano G, Slomka PJ, Berman DS. Comparison of the extent and severity of myocardial perfusion defects by CT angiography and SPECT myocardial perfusion imaging. JACC Cardiovasc Imaging. 2010;3:1010–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med. 2001;345:1863–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Chen Z, Duan Q, Xue X, Chen L, Ye W, Jin L, Sun B. Noninvasive detection of coronary artery stenoses with contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T. Cardiology. 2010;117:284–90.PubMedCrossRefGoogle Scholar
  58. 58.
    Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S, Marber M, Nagel RR, Redwood S, Plein S. High-resolution magnetic resonance myocardial perfusion imaging at 3.0-tesla to detect hemodynamically significant coronary artery stenoses as determined by fractional flow reserve. J Am Coll Cardiol. 2011;57:70–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Weber OM, Martin AJ, Higgins CB. Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med. 2003;50:1223–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Mymin D, Sharma GP. Total and effective coronary blood flow in coronary and noncoronary heart disease. J Clin Invest. 1974;52:363–73.CrossRefGoogle Scholar
  61. 61.
    Steffens JC, Bourne MW, Sakuma H, O’Sullivan M, Higgins CB. Quantification of collateral blood flow in coarctation of the aorta by velocity encoded cine magnetic resonance imaging. Circulation. 1994;90:937–43.PubMedCrossRefGoogle Scholar
  62. 62.
    Therrien J, Webb GD. Congenital heart disease in adults. In: Braunwald E, editor. Heart disease: a textbook of cardiovascular medicine. 6th ed. Philadelphia: Saunders; 2001. p. 1592–621.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.St. Thomas HeartNashvilleUSA

Personalised recommendations