Dynamic Models of the Firm with Green Energy and Goodwill with a Constant Size of the Output Market

  • Herbert DawidEmail author
  • Richard F. Hartl
  • Peter M. Kort
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 280)


This paper analyzes a dynamic model of the firm. We focus on the effect of investment in green energy. We explicitly take into account that green energy has a positive side effect, namely that it contributes to the goodwill of the firm and thus increases demand. Different models are proposed and the solutions range from monotonic saddle point convergence to history-dependent Skiba behavior.


Green capital Goodwill Optimal investment Skiba curve 



The authors are grateful for helpful comments from two anonymous referees.


  1. Amigues, J.-P., Ayong Le Kama, A., & Moreaux, M. (2015). Equilibrium transitions from non-renewable energy to renewable energy under capacity constraints. Journal of Economic Dynamics and Control, 55, 89–112.CrossRefGoogle Scholar
  2. André, F., Sokri, A., & Zaccour, G. (2011). Public disclosure programs vs. traditional approaches for environmental regulation: Green goodwill and the policies of the firm. European Journal of Operational Research, 212, 199–212.CrossRefGoogle Scholar
  3. Ben Youssef, S., & Zaccour, G. (2014). Absorptive capacity, R&D spillovers, emissions taxes and R&D subsidies. Strategic Behavior and the Environment, 4(1), 41–58.CrossRefGoogle Scholar
  4. Breton, M., Sbragia, L., & Zaccour, G. (2010). Dynamic models for international environmental agreements. Environmental and Resource Economics, 45, 25–48.CrossRefGoogle Scholar
  5. Breton, M., & Zaccour, G. (Eds.). (1991). Advances in operations research in the oil and gas industry. Paris: Éditions Technip.Google Scholar
  6. Carraro, C., Haurie, A., & Zaccour, G. (Eds.). (1994). Environmental management in a transition to market economy: A challenge to governments and business. Paris: Éditions Technip.Google Scholar
  7. Dawid, H., Hartl, R. F., & Kort, P. M. (2018). Dynamic models of the firm with green energy and goodwill. In G. Feichtinger, R. Kovacevic, & G. Tragler (Eds.), Control systems and mathematical methods in economics - Essays in honor of Vladimir M. Veliov (pp. 279–296). Berlin: Springer.CrossRefGoogle Scholar
  8. Dawid, H., Keoula, M., Kopel, M., & Kort, P. M. (2015). Product innovation incentives by an incumbent firm: A dynamic analysis. Journal of Economic Behavior and Organization, 117, 411–438.CrossRefGoogle Scholar
  9. Dockner, E. J. (1985). Local stability analysis in optimal control problems with two state variables. In G. Feichtinger (Ed.), Optimal control theory and economic analysis (Vol. 2, pp. 89–103). Amsterdam: North-Holland.Google Scholar
  10. Domenech, P.-A., Saint-Pierre, P., & Zaccour, G. (2011). Forest conservation and CO2 emissions: A viable approach. Environmental Modeling & Assessment, 16(6), 519–539.CrossRefGoogle Scholar
  11. Eyland, T., & Zaccour, G. (2014). Carbon tariffs and cooperative outcomes. Energy Policy, 65, 718–728.CrossRefGoogle Scholar
  12. Feichtinger, G., & Hartl, R. F. (1986). Optimale Kontrolle ökonomischer Prozesse: Anwendungen des Maximumprinzips in den Wirtschaftswisssenschaften. Berlin: de Gruyter.CrossRefGoogle Scholar
  13. Feichtinger, G., Novak, A., & Wirl, F. (1994). Limit cycles in intertemporal adjustment models: Theory and applications. Journal of Economic Dynamics and Control, 18, 353–380.CrossRefGoogle Scholar
  14. Grass, D., Caulkins, J. P., Feichtinger, G., Tragler, G., & Behrens, D. A. (2008). Optimal control of nonlinear processes. Berlin: Springer.CrossRefGoogle Scholar
  15. Jørgensen, S., Martín-Herrán, G., & Zaccour, G. (2010). Dynamic games in the economics and management of pollution. Environmental Modeling & Assessment, 15(6), 433–446.CrossRefGoogle Scholar
  16. Loulou, R., Waaub, J.-P., & Zaccour, G. (Eds.). (2005). Energy and environment. Berlin: Springer.Google Scholar
  17. Masoudi, N., Santugini, M., & Zaccour, G. (2016). A dynamic game of emissions pollution with uncertainty and learning. Environmental and Resource Economics, 64(3), 349–372.CrossRefGoogle Scholar
  18. Masoudi, N., & Zaccour, G. (2013). A differential game of international pollution control with evolving environmental costs. Environment and Development Economics, 18(6), 680–700.CrossRefGoogle Scholar
  19. Masoudi, N., & Zaccour, G. (2014). Emissions control policies under uncertainty and rational learning in a linear-state dynamic model. Automatica, 50, 719–726.CrossRefGoogle Scholar
  20. Masoudi, N., & Zaccour, G. (2017). Adapting to climate change: Is cooperation good for the environment? Economics Letters, 153, 1–5.CrossRefGoogle Scholar
  21. The Economist. (2017). Renewable energy: A world turned upside down. Feb 25 2017.Google Scholar
  22. Tsur, Y., & Zemel, A. (2011). On the dynamics of competing energy sources. Automatica, 47(1), 1357–1365.CrossRefGoogle Scholar
  23. Wirl, F. (1991). (Monopolistic) resource extraction and limit pricing: The market penetration of competitively produced synfuels. Environmental Resource Economics, 1, 157–178.CrossRefGoogle Scholar
  24. Wirl, F. (2008). Intertemporal investments into synfuels. Natural Resource Modeling, 21(3), 466–488.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Herbert Dawid
    • 1
    Email author
  • Richard F. Hartl
    • 2
  • Peter M. Kort
    • 3
    • 4
  1. 1.Department of Business Administration and Economics and Center for Mathematical EconomicsBielefeld UniversityBielefeldGermany
  2. 2.Department of Business Administration, Production and Operations ManagementUniversity of ViennaViennaAustria
  3. 3.Department of Econometrics and Operations Research & CentERTilburg UniversityTilburgThe Netherlands
  4. 4.Department of EconomicsUniversity of AntwerpAntwerpBelgium

Personalised recommendations