Advertisement

Non-linear Incentive Equilibrium Strategies for a Transboundary Pollution Differential Game

  • Javier de Frutos
  • Guiomar Martín-HerránEmail author
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 280)

Abstract

In this paper we apply non-linear incentive strategies to sustain over time an agreement. We illustrate the use of these strategies in a linear-quadratic transboundary pollution differential game. The incentive strategies are constructed in such a way that in the long run the pollution stock (the state variable) is close to the steady state of the pollution stock under the cooperative mode of play. The non-linear incentive functions depend on the emission rates (control variables) of both players and on the current value of the pollution stock. The credibility of the incentive equilibrium strategies is analyzed and the performance of open-loop and feedback incentive strategies is compared in their role of helping to sustain an agreement over time. We present numerical experiments to illustrate the results.

Keywords

Incentive equilibria Differential games Credibility Environmental Economics 

Notes

Acknowledgements

We are grateful to two anonymous reviewers for valuable comments and suggestions in an earlier draft of this paper. This research is partially supported by MINECO under projects MTM2016-78995-P (AEI) (Javier de Frutos) and ECO2014-52343-P and ECO2017-82227-P (AEI) (Guiomar Martín-Herrán) and by Junta de Castilla y León VA024P17 and VA105G18 co-financed by FEDER funds (EU).

References

  1. Breton, M., Sokri, A., & Zaccour, G. (2008). Incentive equilibrium in an overlapping-generations environmental game. European Journal of Operational Research, 185, 687–699.CrossRefGoogle Scholar
  2. Buratto, A., & Zaccour, G. (2009). Coordination of advertising strategies in a fashion licensing contract. Journal of Optimization Theory and Applications, 142, 31–53.CrossRefGoogle Scholar
  3. De Frutos, J., & Martín-Herrán, G. (2015). Does flexibility facilitate sustainability of cooperation over time? A case study from environmental economics. Journal of Optimization Theory and Applications, 165, 657–677.CrossRefGoogle Scholar
  4. De Giovanni, P. (2018). A joint maximization incentive in closed-loop supply chains with competing retailers: The case of spent-battery recycling. European Journal of Operational Research, 268, 128–147.CrossRefGoogle Scholar
  5. De Giovanni, P., Reddy, P. V., & Zaccour, G. (2016). Incentive strategies for an optimal recovery program in a closed-loop supply chain. European Journal of Operational Research, 249, 605–617.CrossRefGoogle Scholar
  6. Dockner, E. J., & Long, N. V. (1993). International pollution control: Cooperative versus noncooperative strategies. Journal of Environmental Economics and Management, 25, 13–29.CrossRefGoogle Scholar
  7. Ehtamo, H., & Hämäläinen, R. P. (1986). On affine incentives for dynamic decision problems. In T. Basar (Ed.), Dynamic games and applications in economics (pp. 47–63). Berlin: Springer.CrossRefGoogle Scholar
  8. Ehtamo, H., & Hämäläinen, R. P. (1989). Incentive strategies and equilibria for dynamic games with delayed information. Journal of Optimization Theory and Applications, 63, 355–369.CrossRefGoogle Scholar
  9. Ehtamo, H., & Hämäläinen, R. P. (1993). Cooperative incentive equilibrium for a resource management problem. Journal of Economic Dynamics and Control, 17, 659–678.CrossRefGoogle Scholar
  10. Ehtamo, H., & Hämäläinen, R. P. (1995). Credibility of linear equilibrium strategies in a discrete time fishery management game. Group Decision and Negotiation, 4, 27–37.CrossRefGoogle Scholar
  11. Haurie, A., Krawczyk, J. B., & Zaccour, G. (2012). Games and dynamic games. Singapore: World Scientific.CrossRefGoogle Scholar
  12. Haurie, A., & Pohjola, M. (1987). Efficient equilibria in a differential game of capitalism. Journal of Economic Dynamics and Control, 11, 65–78.CrossRefGoogle Scholar
  13. Jørgensen, S., Martín-Herrán, G., & Zaccour, G. (2003). Agreeability and time-consistency in linear-state differential games. Journal of Optimization Theory and Applications, 119, 49–63.CrossRefGoogle Scholar
  14. Jørgensen, S., Martín-Herrán, G., & Zaccour, G. (2005). Sustainability of cooperation overtime in linear-quadratic differential games. International Game Theory Review, 7, 395–406.CrossRefGoogle Scholar
  15. Jørgensen, S., Taboubi, S., & Zaccour, G. (2006). Incentives for retailer promotion in a marketing channel. In A. Haurie, S. Muto, L. A. Petrosjan, & T. E. S. Raghavan (Eds.), Annals of the international society of dynamic games (Vol. 8, pp. 365–378). Boston: Birkhäuser.CrossRefGoogle Scholar
  16. Jørgensen, S., & Zaccour, G. (2001a). Time consistent side payments in a dynamic game of downstream pollution. Journal of Economic Dynamics and Control, 25, 1973–1987.CrossRefGoogle Scholar
  17. Jørgensen, S., & Zaccour, G. (2001b). Incentive equilibrium strategies and welfare allocation in a dynamic game of pollution control. Automatica, 37, 29–36.CrossRefGoogle Scholar
  18. Jørgensen, S., & Zaccour, G. (2002). Time consistency in cooperative differential games. In G. Zaccour (Ed.), Decision and control in management science (in Honor of Alain Haurie) (pp. 349–366). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  19. Jørgensen, S., & Zaccour, G. (2003). Channel coordination over time: Incentive equilibria and credibility. Journal of Economic Dynamics and Control, 27, 801–822.CrossRefGoogle Scholar
  20. Kaitala, V., & Pohjola, M. (1990). Economic development and agreeable redistribution in capitalism: Efficient game equilibria in a two-class neoclassical growth model. International Economic Review, 31, 421–437.CrossRefGoogle Scholar
  21. Kaitala, V., & Pohjola, M. (1995). Sustainable international agreements on greenhouse warming: A game theory study. In C. Carraro & J. A. Filar (Eds.), Annals of the international society of dynamic games (Vol. 2, pp. 67–87). Boston: Birkhäuser.Google Scholar
  22. Kierzenka, J., & Shampine, L. F. (2001). A BVP solver based on residual control and the MATLAB PSE. ACM TOMS, 27, 299–316.CrossRefGoogle Scholar
  23. Martín-Herrán, G., & Taboubi, S. (2005). Incentive strategies for shelf-space allocation in duopolies. In A. Haurie & G. Zaccour (Eds.), Dynamic games: Theory and applications. GERAD 25th anniversary series (pp. 231–253). New York: Springer.CrossRefGoogle Scholar
  24. Martín-Herrán, G., & Zaccour, G. (2005). Credibility of incentive equilibrium strategies in linear-state differential games. Journal of Optimization Theory and Applications, 126, 1–23.CrossRefGoogle Scholar
  25. Martín-Herrán, G., & Zaccour, G. (2009). Credible linear incentive equilibrium strategies in linear-quadratic differential games. In P. Bernhard, V. Gaitsgory, & O. Pourtallier (Eds.), Annals of the international society of dynamic games (Vol. 10, pp. 261–291). Boston: Birkhäuser.Google Scholar
  26. Petrosjan, L. A. (1997). Agreeable solutions in differential games. International Journal of Mathematics, Game Theory and Algebra, 7, 165–177.Google Scholar
  27. Petrosjan, L. A., & Zaccour, G. (2003). Time-consistent Shapley value allocation of pollution cost control. Journal of Economic Dynamics and Control, 27, 381–398.CrossRefGoogle Scholar
  28. Petrosjan, L. A., & Zenkevich, N. A. (1996). Game theory. Singapore: World Scientific.CrossRefGoogle Scholar
  29. Taboubi, S. (2019). Incentive mechanisms for price and advertising coordination in dynamic marketing channels. International Transactions in Operational Research, 26, 2281–2304.CrossRefGoogle Scholar
  30. Tolwinski, B., Haurie, A., & Leitmann, G. (1986). Cooperative equilibria in differential games. Journal of Mathematical Analysis and Applications, 119, 192–202.CrossRefGoogle Scholar
  31. Van der Ploeg, F., & De Zeeuw, A. J. (1992). International aspects of pollution control. Environmental and Resource Economics, 2, 117–139.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.IMUVA and Dpto. Matemática Aplicada, Facultad de CienciasUniversidad de ValladolidValladolidSpain
  2. 2.IMUVA and Dpto. Economía Aplicada, Facultad de Ciencias Económicas y EmpresarialesUniversidad de ValladolidValladolidSpain

Personalised recommendations